Registration Using Sparse Free-Form Deformations

  • Wenzhe Shi
  • Xiahai Zhuang
  • Luis Pizarro
  • Wenjia Bai
  • Haiyan Wang
  • Kai-Pin Tung
  • Philip Edwards
  • Daniel Rueckert
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7511)


Non-rigid image registration using free-form deformations (FFD) is a widely used technique in medical image registration. The balance between robustness and accuracy is controlled by the control point grid spacing and the amount of regularization. In this paper, we revisit the classic FFD registration approach and propose a sparse representation for FFDs using the principles of compressed sensing. The sparse free-form deformation model (SFFD) can capture fine local details such as motion discontinuities without sacrificing robustness. We demonstrate the capabilities of the proposed framework to accurately estimate smooth as well as discontinuous deformations in 2D and 3D image sequences. Compared to the classic FFD approach, a significant increase in registration accuracy can be observed in natural images (61%) as well as in cardiac MR images (53%) with discontinuous motions.


Control Point Image Registration Sparse Representation Registration Accuracy Sparsity Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L.G., Leach, M.O., Hawkes, D.J.: Nonrigid registration using free-form deformations: application to breast MR images. IEEE Transactions on Medical Imaging 18(8), 712–721 (1999)CrossRefGoogle Scholar
  2. 2.
    Modat, M., Ridgway, G.R., Taylor, Z.A., Lehmann, M., Barnes, J., Hawkes, D.J., Fox, N.C., Ourselin, S.: Fast free-form deformation using graphics processing units. Computer Methods and Programs in Biomedicine 98(3), 278–284 (2010)CrossRefGoogle Scholar
  3. 3.
    Klein, S., Staring, M., Murphy, K., Viergever, M.A., Pluim, J.: Elastix: a toolbox for intensity-based medical image registration. IEEE Transactions on Medical Imaging 29(1), 196–205 (2010)CrossRefGoogle Scholar
  4. 4.
    Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artificial Intelligence 17(1-3), 185–203 (1981)CrossRefGoogle Scholar
  5. 5.
    Mémin, E., Pérez, P.: Hierarchical estimation and segmentation of dense motion fields. International Journal of Computer Vision 46(2), 129–155 (2002)zbMATHCrossRefGoogle Scholar
  6. 6.
    Roth, S., Black, M.J.: On the spatial statistics of optical flow. In: ICCV 2005, vol. 1, pp. 42–49 (2005)Google Scholar
  7. 7.
    Sun, D., Roth, S., Black, M.J.: Secrets of optical flow estimation and their principles. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2432–2439. IEEE (2010)Google Scholar
  8. 8.
    Thirion, J.P.: Image matching as a diffusion process: an analogy with maxwell’s demons. Medical Image Analysis 2(3), 243–260 (1998)CrossRefGoogle Scholar
  9. 9.
    Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Symmetric Log-Domain Diffeomorphic Registration: A Demons-Based Approach. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 754–761. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Schnabel, J.A., Rueckert, D., Quist, M., Blackall, J.M., Castellano-Smith, A.D., Hartkens, T., Penney, G.P., Hall, W.A., Liu, H., Truwit, C.L., Gerritsen, F.A., Hill, D.L.G., Hawkes, D.J.: A Generic Framework for Non-rigid Registration Based on Non-uniform Multi-level Free-Form Deformations. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 573–581. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Rohlfing, T., Maurer Jr., C.R.: Intensity-Based Non-rigid Registration Using Adaptive Multilevel Free-Form Deformation with an Incompressibility Constraint. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 111–119. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    Hansen, M.S., Larsen, R., Glocker, B., Navab, N.: Adaptive parametrization of multivariate b-splines for image registration. In: CVPR, pp. 1–8 (2008)Google Scholar
  13. 13.
    Roozgard, A., Barzigar, N., Cheng, S., Verma, P.: Dense image registration using sparse coding and belief propagation. In: International Conference on Signal Processing and Communication Systems, pp. 1–5 (2011)Google Scholar
  14. 14.
    Shen, X., Wu, Y.: Sparsity model for robust optical flow estimation at motion discontinuities. In: CVPR, pp. 2456–2463 (2010)Google Scholar
  15. 15.
    Glocker, B., Komodakis, N., Tziritas, G., Navab, N., Paragios, N.: Dense image registration through mrfs and efficient linear programming. Medical Image Analysis 12(6), 731–741 (2008)CrossRefGoogle Scholar
  16. 16.
    Baker, S., Scharstein, D., Lewis, J.P., Roth, S., Black, M.J., Szeliski, R.: A database and evaluation methodology for optical flow. In: ICCV, pp. 1–8 (2007)Google Scholar
  17. 17.
    Donoho, D.L., Huo, X.: Uncertainty principles and ideal atomic decomposition. IEEE Transactions on Information Theory 47(7), 2845–2862 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Studholme, C., Hill, D., Hawkes, D., et al.: An overlap invariant entropy measure of 3D medical image alignment. Pattern Recognition 32(1), 71–86 (1999)CrossRefGoogle Scholar
  19. 19.
    Kim, S.J., Koh, K., Lustig, M., Boyd, S., Gorinevsky, D.: An interior-point method for large-scale l1-regularized least squares. IEEE Journal of Selected Topics in Signal Processing 1(4), 606–617 (2007)CrossRefGoogle Scholar
  20. 20.
    Kybic, J., Unser, M.: Fast parametric elastic image registration. IEEE Transactions on Image Processing 12(11), 1427–1442 (2003)CrossRefGoogle Scholar
  21. 21.
    Pizarro, L., Delpiano, J., Aljabar, P., Ruiz-del-Solar, J., Rueckert, D.: Towards dense motion estimation in light and electron microscopy. In: ISBI: From Nano to Macro, pp. 1939–1942 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Wenzhe Shi
    • 1
  • Xiahai Zhuang
    • 2
  • Luis Pizarro
    • 1
  • Wenjia Bai
    • 1
  • Haiyan Wang
    • 1
  • Kai-Pin Tung
    • 1
  • Philip Edwards
    • 1
  • Daniel Rueckert
    • 1
  1. 1.Biomedical Image Analysis GroupImperial College LondonUK
  2. 2.Shanghai Advanced Research InstituteChinese Academy of SciencesChina

Personalised recommendations