Real-Time Quantitative Elasticity Imaging of Deep Tissue Using Free-Hand Conventional Ultrasound

  • Ali Baghani
  • Hani Eskandari
  • Weiqi Wang
  • Daniel Da Costa
  • Mohamed Nabil Lathiff
  • Ramin Sahebjavaher
  • Septimiu Salcudean
  • Robert Rohling
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7511)

Abstract

In this article an ultrasound elastography technology is reported which provides quantitative images of tissue elasticity from deep soft tissue. The technique is analogous to Magnetic Resonance Elastography in the use of external mechanical vibrations which can penetrate deep tissue. Multifrequency steady-state mechanical vibrations are applied to the tissue at the skin and tissue displacements are measured by a conventional ultrasound system. Absolute values of tissue elasticity are computed in real-time for each frequency and displayed to the physician. The quantitative elasticity images produced by the technology are validated with magnetic resonance elastography images as the gold standard on standard elasticity phantoms. Preliminary in-vivo data from healthy volunteers are presented which show the potential of the technology for clinical use. The system is currently being used in different clinical studies to image kidney fibrosis, liver fibrosis, and prostate cancer.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lerner, R., Parker, K., Holen, J., Gramiak, R., Waag, R.: Sono-elasticity: Medical elasticity images derived from ultrasound signals in mechanically vibrated targets. Acoustical Imaging 16, 317–327 (1988)CrossRefGoogle Scholar
  2. 2.
    Bercoff, J., Chaffai, S., Tanter, M., Sandrin, L., Catheline, S., Fink, M., Gennisson, J.L., Meunier, M.: In vivo breast tumor detection using transient elastography. Ultrasound Med. Biol. 29(10), 1387–1396 (2003)CrossRefGoogle Scholar
  3. 3.
    Huwart, L., Peeters, F., Sinkus, R., Annet, L., Salameh, N., ter Beek, L.C., Horsmans, Y., Beers, B.E.V.: Liver fibrosis: Non-invasive assessment with MR elastography. NMR in Biomedicine 19, 173–179 (2006)CrossRefGoogle Scholar
  4. 4.
    Lorenz, A., Sommerfeld, H., Garcia-Schurmann, M., Philippou, S., Senge, T., Ermert, H.: A new system for the acquisition of ultrasonic multicompression strain images of the human prostate in vivo. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 46(5), 1147–1154 (1999)CrossRefGoogle Scholar
  5. 5.
    Ophir, J., Cespedes, I., Ponnekanti, H., Yazdi, Y., Li, X.: Elastography: A quantitative method for imaging of elasticity of biological tissues. Ultrasonic Imaging 13, 111–134 (1991)CrossRefGoogle Scholar
  6. 6.
    Bercoff, J., Tanter, M., Fink, M.: Supersonic shear imaging: A new technique for soft tissue elasticity mapping. IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 51(4), 396–409 (2004)CrossRefGoogle Scholar
  7. 7.
    Nightingale, K., Palmeri, M., Nightingale, R., Trahey, G.: On the feasibility of remote palpation using acoustic radiation force. J. Acoust. Soc. Am. 110(1), 625–634 (2001)CrossRefGoogle Scholar
  8. 8.
    Muthupillai, R., Lomas, D., Rossman, P., Greenleaf, J., Manduca, A., Ehman, R.: Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science 269(5232), 1854–1857 (1995)CrossRefGoogle Scholar
  9. 9.
    Baghani, A., Brant, A., Salcudean, T., Rohling, R.: A high frame rate ultrasound system for the study of tissue motions. IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 57(7), 1535–1547 (2010)CrossRefGoogle Scholar
  10. 10.
    Sinkus, R., Tanter, M., Xydeas, T., Catheline, S., Bercoff, J., Fink, M.: Viscoelastic shear properties of in vivo breast lesions measured by MR elastography. Magnetic Resonance Imaging 23, 159–165 (2005)CrossRefGoogle Scholar
  11. 11.
    Asbach, P., Klatt, D., Hamhaber, U., Braun, J., Somasundaram, R., Hamm, B., Sack, I.: Assessment of liver viscoelasticity using multifrequency MR elastography. Magnetic Resonance in Medicine 60(2), 373–379 (2008)CrossRefGoogle Scholar
  12. 12.
    Lerner, R., Huang, S., Parker, K.: Sonoelasticity images derived from ultrasound signals in mechanically vibrated tissues. Ultrasound in Medicine and Biology 16(3), 231–239 (1990)CrossRefGoogle Scholar
  13. 13.
    Muller, M., Gennisson, J., Deffieux, T., Sinkus, R., Annic, P., Montaldo, G., Tanter, M., Fink, M.: Full 3D inversion of the viscoelasticity wave propagation problem for 3D ultrasound elastography in breast cancer diagnosis. In: IEEE Ultrasonics Symposium, pp. 672–675. IEEE (2007)Google Scholar
  14. 14.
    Zahiri-Azar, R., Salcudean, S.: Motion estimation in ultrasound images using time domain cross correlation with prior estimates. IEEE Transactions on Biomedical Engineering 53(10), 1990–2000 (2006)CrossRefGoogle Scholar
  15. 15.
    Baghani, A., Salcudean, S., Honarvar, M., Sahebjavaher, R., Rohling, R., Sinkus, R.: Travelling wave expansion: A model fitting approach to the inverse problem of elasticity reconstruction. IEEE Transactions on Medical Imaging 30(8), 1555–1565 (2011)CrossRefGoogle Scholar
  16. 16.
    Asbach, P., Klatt, D., Schlosser, B., Biermer, M., Muche, M., Rieger, A., Loddenkemper, C., Somasundaram, R., Berg, T., Hamm, B., et al.: Viscoelasticity-based staging of hepatic fibrosis with multifrequency MR elastography. Radiology 257(1), 80–86 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ali Baghani
    • 1
  • Hani Eskandari
    • 1
  • Weiqi Wang
    • 1
  • Daniel Da Costa
    • 1
  • Mohamed Nabil Lathiff
    • 1
  • Ramin Sahebjavaher
    • 1
  • Septimiu Salcudean
    • 1
  • Robert Rohling
    • 1
    • 2
  1. 1.Department of Electrical and Computer EngineeringUniversity of British ColumbiaVancouverCanada
  2. 2.Co-appointed with the Department of Mechanical EngineeringUniversity of British ColumbiaVancouverCanada

Personalised recommendations