LBM-EP: Lattice-Boltzmann Method for Fast Cardiac Electrophysiology Simulation from 3D Images

  • S. Rapaka
  • T. Mansi
  • B. Georgescu
  • M. Pop
  • G. A. Wright
  • A. Kamen
  • Dorin Comaniciu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7511)

Abstract

Current treatments of heart rhythm troubles require careful planning and guidance for optimal outcomes. Computational models of cardiac electrophysiology are being proposed for therapy planning but current approaches are either too simplified or too computationally intensive for patient-specific simulations in clinical practice. This paper presents a novel approach, LBM-EP, to solve any type of mono-domain cardiac electrophysiology models at near real-time that is especially tailored for patient-specific simulations. The domain is discretized on a Cartesian grid with a level-set representation of patient’s heart geometry, previously estimated from images automatically. The cell model is calculated node-wise, while the transmembrane potential is diffused using Lattice-Boltzmann method within the domain defined by the level-set. Experiments on synthetic cases, on a data set from CESC’10 and on one patient with myocardium scar showed that LBM-EP provides results comparable to an FEM implementation, while being 10 − 45 times faster. Fast, accurate, scalable and requiring no specific meshing, LBM-EP paves the way to efficient and detailed models of cardiac electrophysiology for therapy planning.

Keywords

Vortex Anisotropy Convection Stim Fenton 

References

  1. 1.
    Camara, O., Sermesant, M., Lamata, P., Wang, L., Pop, M., Relan, J., De Craene, M., Delingette, H., Liu, H., Niederer, S., Pashaei, A., Plank, G., Romero, D., Sebastian, R., Wong, K.C., Zhang, H., Ayache, N., Frangi, A., Shi, P., Smith, N., Wright, G.: Inter-Model Consistency and Complementarity: Learning from ex-vivo Imaging and Electrophysiological Data towards an Integrated Understanding of Cardiac Physiology. Prog. Biophys. Mol. Biol. 107, 122–133 (2011)CrossRefGoogle Scholar
  2. 2.
    Chen, S., Doolen, G.D.: Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30(1), 329–364 (1998)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Clayton, R.H., Bernus, O., Cherry, E.M., Dierckx, H., Fenton, F.H., Mirabella, L., Panfilov, A.V., Sachse, F.B., Seemann, G., Zhang, H.: Models of cardiac tissue electrophysiology: Progress, challenges and open questions. Prog. Biophys. Mol. Biol. 104(1-3), 22 (2011)CrossRefGoogle Scholar
  4. 4.
    Dawson, S.P., Chen, S., Doolen, G.D.: Lattice Boltzmann computations for reaction-diffusion equations. J. Chem. Phys. 98(2), 1514–1523 (1993)CrossRefGoogle Scholar
  5. 5.
    Hodgkin, A.L., Huxley, A.F.: A quantitative description of ion currents and its applications to conduction and excitation in nerve membranes. J. Physiol. 117(4), 500–544 (1952)Google Scholar
  6. 6.
    Mitchell, C.C., Schaeffer, D.G.: A two-current model for the dynamics of cardiac membrane. Bull. Math. Biol. 65(5), 767–793 (2003)CrossRefGoogle Scholar
  7. 7.
    Pop, M., Sermesant, M., Lepiller, D., Truong, M.V., McVeigh, E.R., Crystal, E., Dick, A., Delingette, H., Ayache, N., Wright, G.A.: Fusion of optical imaging and mri for the evaluation and adjustment of macroscopic models of cardiac electrophysiology: A feasibility study. Med. Image Anal. 13(2), 370–380 (2009)CrossRefGoogle Scholar
  8. 8.
    Relan, J., Sermesant, M., Pop, M., Delingette, H., Sorine, M., Wright, G., Ayache, N.: Volumetric Prediction of Cardiac Electrophysiology using a Heart Model Personalised to Surface Data. In: CI2BM 2009 - MICCAI Workshop on Cardiovascular Interventional Imaging and Biophysical Modelling (2009)Google Scholar
  9. 9.
    Yoshida, H., Nagaoka, M.: Multiple-relaxation-time lattice Boltzmann model for the convection and anisotropic diffusion equation. J. Comp. Phys. 229, 7774–7795 (2010)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Yu, D., Mei, R., Luo, L., Shyy, W.: Viscous flow computations with the method of lattice Boltzmann equation. Prog. Aero. Sci. 39(5), 329–367 (2003)CrossRefGoogle Scholar
  11. 11.
    Zheng, Y., Barbu, A., Georgescu, B., Scheuering, M., Comaniciu, D.: Four-chamber heart modeling and automatic segmentation for 3-D cardiac CT volumes using marginal space learning and steerable features. IEEE Trans. Med. Imaging 27(11), 1668–1681 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • S. Rapaka
    • 1
  • T. Mansi
    • 1
  • B. Georgescu
    • 1
  • M. Pop
    • 2
  • G. A. Wright
    • 2
  • A. Kamen
    • 1
  • Dorin Comaniciu
    • 1
  1. 1.Corporate Research and Technology, Imaging and Computer VisionSiemens CorporationPrincetonUSA
  2. 2.Department of Medical BiophysicsUniversity of Toronto, Sunnybrook Health Sciences Centre, Imaging ResearchTorontoCanada

Personalised recommendations