Advertisement

Automated Diffeomorphic Registration of Anatomical Structures with Rigid Parts: Application to Dynamic Cervical MRI

  • Olivier Commowick
  • Nicolas Wiest-Daesslé
  • Sylvain Prima
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7511)

Abstract

We propose an iterative two-step method to compute a diffeomorphic non-rigid transformation between images of anatomical structures with rigid parts, without any user intervention or prior knowledge on the image intensities. First we compute spatially sparse, locally optimal rigid transformations between the two images using a new block matching strategy and an efficient numerical optimiser (BOBYQA). Then we derive a dense, regularised velocity field based on these local transformations using matrix logarithms and M-smoothing. These two steps are iterated until convergence and the final diffeomorphic transformation is defined as the exponential of the accumulated velocity field. We show our algorithm to outperform the state-of-the-art log-domain diffeomorphic demons method on dynamic cervical MRI data.

Keywords

Block Match Rigid Transformation Rigid Part Deformation Grid Block Match Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Okuda, D., Mowry, E., Cree, B., Crabtree, E., Goodin, D., Waubant, E., Pelletier, D.: Asymptomatic spinal cord lesions predict disease progression in radiologically isolated syndrome. Neurology 76(8), 686–692 (2011)CrossRefGoogle Scholar
  2. 2.
    Abitbol, J.J., Hong, S.W., Khan, S., Wang, J.C.: Dynamic MRI of the spine. In: Szpalski, M., Gunzburg, R., Rydevik, B.L., Huec, J.C., Mayer, H.M. (eds.) Surgery for Low Back Pain, pp. 39–45. Springer (2010)Google Scholar
  3. 3.
    Maintz, J., Viergever, M.: A survey of medical image registration. Med. Image Anal. 2(1), 1–36 (1998)CrossRefGoogle Scholar
  4. 4.
    Little, J., Hill, D., Hawkes, D.: Deformations Incorporating rigid structures. Comput Vis. Image Und. 66(2), 223–232 (1997)CrossRefGoogle Scholar
  5. 5.
    Arsigny, V., Commowick, O., Ayache, N., Pennec, X.: A Fast and Log-Euclidean Polyaffine Framework for Locally Linear Registration. J. Math. Imaging Vis. 33(2), 222–238 (2009)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Commowick, O., Arsigny, V., Isambert, A., Costa, J., Dhermain, F., Bidault, F., Bondiau, P.Y., Ayache, N., Malandain, G.: An efficient locally affine framework for the smooth registration of anatomical structures. Med. Image Anal. 12(4), 427–441 (2008)CrossRefGoogle Scholar
  7. 7.
    Seiler, C., Pennec, X., Reyes, M.: Geometry-Aware Multiscale Image Registration via OBBTree-Based Polyaffine Log-Demons. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part II. LNCS, vol. 6892, pp. 631–638. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Rohlfing, T., Maurer Jr., C.R.: Intensity-Based Non-rigid Registration Using Adaptive Multilevel Free-Form Deformation with an Incompressibility Constraint. In: Niessen, W., Viergever, M. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 111–119. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Loeckx, D., Maes, F., Vandermeulen, D., Suetens, P.: Nonrigid Image Registration Using Free-Form Deformations with a Local Rigidity Constraint. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 639–646. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Ruan, D., Fessler, J.A., Roberson, M., Balter, J., Kessler, M.: Nonrigid registration using regularization that accomodates local tissue rigidity. In: Reinhardt, J.M., Pluim, J.P. (eds.) Medical Imaging 2006: Image Processing. SPIE Press (2006)Google Scholar
  11. 11.
    Staring, M., Klein, S., Pluim, J.P.: A rigidity penalty term for nonrigid registration. Med. Phys. 34(11), 4098–4108 (2007)CrossRefGoogle Scholar
  12. 12.
    Taquet, M., Macq, B., Warfield, S.: Spatially Adaptive Log-Euclidean Polyaffine Registration Based on Sparse Matches. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part II. LNCS, vol. 6892, pp. 590–597. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Symmetric Log-Domain Diffeomorphic Registration: A Demons-Based Approach. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 754–761. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Powell, M.: The BOBYQA algorithm for bound constrained optimization without derivatives. Technical report, Centre for Mathematical Sciences, University of Cambridge, UK (2009)Google Scholar
  15. 15.
    Mrazek, P., Weickert, J., Bruhn, A.: On robust estimation and smoothing with spatial and tonal kernels. In: Klette, R., Kozera, R., Noakes, L., Weickert, J. (eds.) Geometric Properties for Incomplete Data, pp. 335–352. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Ourselin, S., Roche, A., Prima, S., Ayache, N.: Block Matching: A General Framework to Improve Robustness of Rigid Registration of Medical Images. In: Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds.) MICCAI 2000. LNCS, vol. 1935, pp. 557–566. Springer, Heidelberg (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Olivier Commowick
    • 1
    • 2
  • Nicolas Wiest-Daesslé
    • 3
  • Sylvain Prima
    • 1
    • 2
  1. 1.VisAGeS U746 Unit/ProjectINRIA, INSERMRennesFrance
  2. 2.University of Rennes I-CNRS UMR 6074RennesFrance
  3. 3.CHU, University Hospital of RennesRennesFrance

Personalised recommendations