Curvilinear Structure Enhancement with the Polygonal Path Image - Application to Guide-Wire Segmentation in X-Ray Fluoroscopy

  • Vincent Bismuth
  • Régis Vaillant
  • Hugues Talbot
  • Laurent Najman
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7511)

Abstract

Curvilinear structures are common in medical imaging, which typically require dedicated processing techniques. We present a new structure to process these, that we call the polygonal path image, denoted \(\mathfrak{P}\). We derive from \(\mathfrak{P}\) some curvilinear structure enhancement and analysis algorithms. We show that \(\mathfrak{P}\) has some interesting properties: it generalizes several concepts found in other methods; it makes it possible to control the smoothness and length of the structures under study; and it can be computed efficiently. We estimate quantitatively its performance in the context of interventional cardiology for the detection of guide-wires in X-ray images. We show that \(\mathfrak{P}\) is particularly well suited for this task where it appears to outperform previous state of the art techniques.

Keywords

curvilinear structures image segmentation shortest path 

References

  1. 1.
    Franken, E., Rongen, P., van Almsick, M., ter Haar Romeny, B.M.: Detection of Electrophysiology Catheters in Noisy Fluoroscopy Images. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4191, pp. 25–32. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Bismuth, V., Vancamberg, L., Gorges, S.: A comparison of line enhancement techniques: applications to guide-wire detection and respiratory motion tracking. SPIE Conference Series, vol. 7259 (2009)Google Scholar
  3. 3.
    Barbu, A., Athitsos, V., Georgescu, B., Boehm, S., Durlak, P., Comaniciu, D.: Hierarchical learning of curves application to guidewire localization in fluoroscopy. In: Proc. CVPR, pp. 1–8. IEEE (2007)Google Scholar
  4. 4.
    Honnorat, N., Vaillant, R., Paragios, N.: Guide-Wire Extraction through Perceptual Organization of Local Segments in Fluoroscopic Images. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part III. LNCS, vol. 6363, pp. 440–448. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale Vessel Enhancement Filtering. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998)Google Scholar
  6. 6.
    Meijering, E., Jacob, M., Sarria, J., Steiner, P., Hirling, H., Unser, M.: Design and validation of a tool for neurite tracing and analysis in fluorescence microscopy images. Cytometry Part A 58(2), 167–176 (2004)CrossRefGoogle Scholar
  7. 7.
    Vincent, L.: Minimal path algorithms for the robust detection of linear features in gray images. In: Proc. ISMM, pp. 331–338. Kluwer Acad. (1998)Google Scholar
  8. 8.
    Rouchdy, Y., Cohen, L.: Image segmentation by geodesic voting. application to the extraction of tree structures from confocal microscope images. In: ICPR 2008, pp. 1–5. IEEE (2008)Google Scholar
  9. 9.
    Carlotto, M.J.: Enhancement of low-contrast curvilinear features in imagery. IEEE Transactions on Image Processing 16(1), 221–228 (2007)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Tankyevych, O.: Filtering of thin objects: applications to vascular image analysis. PhD thesis, Université Paris Est (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Vincent Bismuth
    • 1
    • 2
  • Régis Vaillant
    • 2
  • Hugues Talbot
    • 1
  • Laurent Najman
    • 1
  1. 1.Laboratoire d’informatique Gaspard-Monge, équipe A3SI, ESIEEUniversité Paris estMarne-la-Vallée Cedex 2France
  2. 2.General Electric HealthcareBucFrance

Personalised recommendations