Automatic Detection and Classification of Teeth in CT Data

  • Nguyen The Duy
  • Hans Lamecker
  • Dagmar Kainmueller
  • Stefan Zachow
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7510)


We propose a fully automatic method for tooth detection and classification in CT or cone-beam CT image data. First we compute an accurate segmentation of the maxilla bone. Based on this segmentation, our method computes a complete and optimal separation of the row of teeth into 16 subregions and classifies the resulting regions as existing or missing teeth. This serves as a prerequisite for further individual tooth segmentation. We show the robustness of our approach by providing extensive validation on 43 clinical head CT scans.


  1. 1.
    Lilja, M., Vuorio, V., Antila, K., Setal, H., Jarnstedt, J., Pollari, M.: Automatic Segmentation of the Mandible From Limited-Angle Dental X-Ray Tomography Reconstructions. In: ISBI: From Nano to Macro, pp. 964–967 (2007)Google Scholar
  2. 2.
    Rueda, S., Gil, J.A., Pichery, R., Alcañiz, M.: Automatic Segmentation of Jaw Tissues in CT Using Active Appearance Models and Semi-automatic Landmarking. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006, Part I. LNCS, vol. 4190, pp. 167–174. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Lamecker, H., Zachow, S., Wittmers, A., Weber, B., Hege, H., Elsholtz, B., Stiller, M.: Automatic segmentation of mandibles in low-dose CT-data. Int. J. of Comp. Ass. Rad. Surg. 1, 393 (2006)Google Scholar
  4. 4.
    Kainmueller, D., Lamecker, H., Seim, H., Zinser, M., Zachow, S.: Automatic Extraction of Mandibular Nerve and Bone from Cone-Beam CT Data. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009, Part II. LNCS, vol. 5762, pp. 76–83. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Barandiaran, I., Macía, I., Berckmann, E., Wald, D., Dupillier, M.P., Paloc, C., Graña, M.: An Automatic Segmentation and Reconstruction of Mandibular Structures from CT-Data. In: Corchado, E., Yin, H. (eds.) IDEAL 2009. LNCS, vol. 5788, pp. 649–655. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Tognola, G., Parazzini, M., Pedretti, G., Ravazzani, P., Grandori, F., Pesatori, A., Norgia, M., Svelto, C.: Novel 3D Reconstruction Method for Mandibular Distraction Planning. In: IST 2006 - International Workshop on Imaging Systems and Techniques Minori, Italy, April 29, pp. 3–6 (2006)Google Scholar
  7. 7.
    Kainmueller, D., Lamecker, H., Seim, H., Zachow, S.: Multi-object Segmentation of Head Bones. MIDAS Journal, Contribution to MICCAI Workshop Head and Neck Auto-Segmentation Challenge, 1–11 (2009)Google Scholar
  8. 8.
    Mahoor, M., Abdelmottaleb, M.: Classification and numbering of teeth in dental bitewing images. Pattern Recognition 38(4), 577–586 (2005)CrossRefGoogle Scholar
  9. 9.
    Nassar, D., Abaza, A., Ammar, H.: Automatic Construction of Dental Charts for Postmortem Identification. IEEE Transactions on Information Forensics and Security 3(2), 234–246 (2008)CrossRefGoogle Scholar
  10. 10.
    Lin, P., Lai, Y., Huang, P.: An effective classification and numbering system for dental bitewing radiographs using teeth region and contour information. Pattern Recognition 43(4), 1380–1392 (2010)CrossRefGoogle Scholar
  11. 11.
    Gao, H., Chae, O.: Automatic Tooth Region Separation for Dental CT Images. In: 2008 Int. Conf. on Conv. and Hybrid Inf. Tech., pp. 897–901 (2008)Google Scholar
  12. 12.
    Hosntalab, M., Aghaeizadeh Zoroofi, R., Abbaspour Tehrani-Fard, A., Shirani, G.: Segmentation of teeth in CT volumetric dataset by panoramic projection and variational level set. Int. J. of Comp. Ass. Rad. Surg. 3(3-4), 257–265 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Nguyen The Duy
    • 1
  • Hans Lamecker
    • 1
  • Dagmar Kainmueller
    • 1
  • Stefan Zachow
    • 1
  1. 1.Zuse-Institute BerlinGermany

Personalised recommendations