Remote Ultrasound Palpation for Robotic Interventions Using Absolute Elastography

  • Caitlin Schneider
  • Ali Baghani
  • Robert Rohling
  • Septimiu Salcudean
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7510)

Abstract

Although robotic surgery has addressed many of the challenges presented by minimally invasive surgery, haptic feedback and the lack of knowledge of tissue stiffness is an unsolved problem. This paper presents a system for finding the absolute elastic properties of tissue using a freehand ultrasound scanning technique, which utilizes the da Vinci Surgical robot and a custom 2D ultrasound transducer for intra-operative use. An external exciter creates shear waves in the tissue, and a local frequency estimation method computes the shear modulus. Results are reported for both phantom and in vivo models. This system can be extended to any 6 degree-of-freedom tracking method and any 2D transducer to provide real-time absolute elastic properties of tissue.

Keywords

Ultrasound Absolute Elastography Robotic Surgery 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baghani, A., Brant, A., Salcudean, S., Rohling, R.: A high-frame-rate ultrasound system for the study of tissue motions. IEEE Ultrasonics, Ferroelectrics and Frequency Control 57(7), 1535–1547 (2010)CrossRefGoogle Scholar
  2. 2.
    Baghani, A., Eskandari, H., Wang, W., Da Costa, D., Nabil, N., Sahebjavaher, R., Salcudean, S., Rohling, R.: Real-time quantitative elasticity imaging of deep tissue using free-hand conventional ultrasound. In: MICCAI: ACCEPTED (2012)Google Scholar
  3. 3.
    Baghani, A., Salcudean, S., Honarvar, M., Sahebjavaher, R., Rohling, R., Sinkus, R.: Travelling wave expansion: A model fitting approach to the inverse problem of elasticity reconstruction. IEEE Medical Imaging (99), 1 (2011)Google Scholar
  4. 4.
    Billings, S., Deshmukh, N., Kang, H., Taylor, R., Boctor, E.: System for robot-assisted real-time laparoscopic ultrasound elastography. In: SPIE Medical Imaging (2012)Google Scholar
  5. 5.
    Evans, A., Whelehan, P., Thomson, K., McLean, D., Brauer, K., Purdie, C., Jordan, L., Baker, L., Thompson, A.: Quantitative shear wave ultrasound elastography: initial experience in solid breast masses. Breast Cancer Res. 12(6) (2010)Google Scholar
  6. 6.
    Han, M., Kim, C., Mozer, P., Schafer, F., Badaan, S., Vigaru, B., Tseng, K., Petrisor, D., Trock, B., Stoianovici, D.: Tandem-robot assisted laparoscopic radical prostatectomy to improve the neurovascular bundle visualization: A feasibility study. Urology (2010)Google Scholar
  7. 7.
    Hubens, G., Coveliers, H., Balliu, L., Ruppert, M., Vaneerdeweg, W.: A performance study comparing manual and robotically assisted laparoscopic surgery using the da Vinci system. Surgical Endoscopy 17(10), 1595–1599 (2003)CrossRefGoogle Scholar
  8. 8.
    Lasso, A., Heffter, T., Pinter, C., Ungi, T., Chen, T.K., Boucharin, A., Fichtinger, G.: Plus: An open-source toolkit for developing ultrasound-guided intervention systems. In: 4th Image Guided Therapy Workshop, vol. 4, p. 103 (2011)Google Scholar
  9. 9.
    Manduca, A., Muthupillai, R., Rossman, P., Greenleaf, J., Ehman, R.: Local wavelength estimation for magnetic resonance elastography. In: Int. Conf. on Image Processing, vol. 3, pp. 527–530. IEEE (1996)Google Scholar
  10. 10.
    Nightingale, K., Soo, M., Nightingale, R., Trahey, G.: Acoustic radiation force impulse imaging: in vivo demonstration of clinical feasibility. Ultrasound in Medicine & Biology 28(2), 227–235 (2002)CrossRefGoogle Scholar
  11. 11.
    Ophir, J., Alam, S., Garra, B., Kallel, F., Konofagou, E., Krouskop, T., Varghese, T.: Elastography: ultrasonic estimation and imaging of the elastic properties of tissues. Journal of Engineering in Medicine 213(3), 203 (1999)CrossRefGoogle Scholar
  12. 12.
    Ophir, J., Cespedes, I., Ponnekanti, H., Yazdi, Y., Li, X.: Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrasonic Imaging 13(2), 111–134 (1991)CrossRefGoogle Scholar
  13. 13.
    Prager, R., Rohling, R., Gee, A., Berman, L.: Rapid calibration for 3-D freehand ultrasound. Ultrasound in Medicine & Biology 24(6), 855–869 (1998)CrossRefGoogle Scholar
  14. 14.
    Schneider, C.M., Dachs II, G.W., Hasser, C.J., Choti, M.A., DiMaio, S.P., Taylor, R.H.: Robot-Assisted Laparoscopic Ultrasound. In: Navab, N., Jannin, P. (eds.) IPCAI 2010. LNCS, vol. 6135, pp. 67–80. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Schneider, C., Guerrero, J., Nguan, C., Rohling, R., Salcudean, S.: Intra-operative “Pick-Up” Ultrasound for Robot Assisted Surgery with Vessel Extraction and Registration: A Feasibility Study. In: Taylor, R.H., Yang, G.-Z. (eds.) IPCAI 2011. LNCS, vol. 6689, pp. 122–132. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    Stolka, P., Keil, M., Sakas, G., McVeigh, E., Allaf, M., Taylor, R., Boctor, E.: A 3D-elastography-guided system for laparoscopic partial nephrectomies. In: SPIE Medical Imaging (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Caitlin Schneider
    • 1
  • Ali Baghani
    • 1
  • Robert Rohling
    • 1
    • 2
  • Septimiu Salcudean
    • 1
  1. 1.Department of Electrical and Computer EngineeringUniversity of British ColumbiaVancouverCanada
  2. 2.Department of Mechanical EngineeringUniversity of British ColumbiaVancouverCanada

Personalised recommendations