Local Implicit Modeling of Blood Vessels for Interactive Simulation

  • A. Yureidini
  • E. Kerrien
  • J. Dequidt
  • Christian Duriez
  • S. Cotin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7510)

Abstract

In the context of computer-based simulation, contact management requires an accurate, smooth, but still efficient surface model for the blood vessels. A new implicit model is proposed, consisting of a tree of local implicit surfaces generated by skeletons (blobby models). The surface is reconstructed from data points by minimizing an energy, alternating with an original blob selection and subdivision scheme. The reconstructed models are very efficient for simulation and were shown to provide a sub-voxel approximation of the vessel surface on 5 patients.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bernhardt, A., Barthe, L., Cani, M.P., et al.: Implicit blending revisited. Comput. Graph. Forum 29(2), 367–375 (2010)CrossRefGoogle Scholar
  2. 2.
    Dequidt, J., Duriez, C., Cotin, S., Kerrien, E.: Towards Interactive Planning of Coil Embolization in Brain Aneurysms. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009, Part I. LNCS, vol. 5761, pp. 377–385. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Goldman, R.: Curvature formulas for implicit curves and surfaces. Computer Aided Geometric Design 22, 632–658 (2005)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Lesage, D., Angelini, E., Bloch, I., et al.: A review of 3D vessel lumen segmentation techniques: Models, features and extraction schemes. Med. Image Anal. 13(6), 819–845 (2009)CrossRefGoogle Scholar
  5. 5.
    Masutani, Y., Masamune, K., Dohi, T.: Region-growing Based Feature Extraction Algorithm for Tree-like Objects. In: Höhne, K.H., Kikinis, R. (eds.) VBC 1996. LNCS, vol. 1131, pp. 159–171. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  6. 6.
    Muraki, S.: Volumetric shape description of range data using blobby model. SIGGRAPH Comput. Graph. 25, 227–235 (1991)CrossRefGoogle Scholar
  7. 7.
    Preim, B., Oeltze, S.: 3D visualization of vasculature: An overview. In: Visualization in Medicine and Life Sciences. Math. and Vis., pp. 39–59. Springer (2008)Google Scholar
  8. 8.
    Schumann, C., Neugebauer, M., Bade, R., et al.: Implicit vessel surface reconstruction for visualization and CFD simulation. IJCARS 2(5), 275–286 (2008)Google Scholar
  9. 9.
    Sherstyuk, A.: Kernel functions in convolution surfaces: A comparative analysis. The Visual Computer 15(4), 171–182 (1999)MATHCrossRefGoogle Scholar
  10. 10.
    Taubin, G.: Estimation of planar curves, surfaces, and nonplanar space curves defined by implicit equations with applications to edge and range image segmentation. IEEE Trans. on PAMI 13, 1115–1138 (1991)CrossRefGoogle Scholar
  11. 11.
    Tsingos, N., Bittar, E., Cani, M.P.: Implicit surfaces for semi-automatic medical organ reconstruction. In: Computer Graphics Internat (CGI 1995), pp. 3–15 (1995)Google Scholar
  12. 12.
    Tyrrell, J., di Tomaso, E., Fuja, D., et al.: Robust 3-D modeling of vasculature imagery using superellipsoids. IEEE Trans. Med. Imag. 26(2), 223–237 (2007)CrossRefGoogle Scholar
  13. 13.
    Yureidini, A., Kerrien, E., Cotin, S.: Robust RANSAC-based blood vessel segmentation. In: SPIE Medical Imaging, vol. 8314, p. 83141M. SPIE (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • A. Yureidini
    • 1
    • 2
    • 4
  • E. Kerrien
    • 1
    • 3
  • J. Dequidt
    • 2
    • 4
  • Christian Duriez
    • 2
    • 4
  • S. Cotin
    • 2
    • 4
  1. 1.InriaVillers-lès-NancyFrance
  2. 2.InriaVilleneuve d’AscqFrance
  3. 3.Loria, UMR7503Université de LorraineVandœuvre-lès-NancyFrance
  4. 4.Lifl, UMR8022Université Lille 1Villeneuve d’AscqFrance

Personalised recommendations