Marker-Less Reconstruction of Dense 4-D Surface Motion Fields Using Active Laser Triangulation for Respiratory Motion Management

  • Sebastian Bauer
  • Benjamin Berkels
  • Svenja Ettl
  • Oliver Arold
  • Joachim Hornegger
  • Martin Rumpf
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7510)


To manage respiratory motion in image-guided interventions a novel sparse-to-dense registration approach is presented. We apply an emerging laser-based active triangulation (AT) sensor that delivers sparse but highly accurate 3-D measurements in real-time. These sparse position measurements are registered with a dense reference surface extracted from planning data. Thereby a dense displacement field is reconstructed which describes the 4-D deformation of the complete patient body surface and recovers a multi-dimensional respiratory signal for application in respiratory motion management. The method is validated on real data from an AT prototype and synthetic data sampled from dense surface scans acquired with a structured light scanner. In a study on 16 subjects, the proposed algorithm achieved a mean reconstruction accuracy of ±0.22 mm w.r.t. ground truth data.


Surface Motion Planning Data Signed Distance Function Structure Light Dense Deformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Hoogeman, M., Prvost, J.B., Nuyttens, J., Pll, J., Levendag, P., Heijmen, B.: Clinical accuracy of the respiratory tumor tracking system of the Cyberknife: assessment by analysis of log files. Int. J. Radiat. Oncol. Biol. Phys. 74(1), 297–303 (2009)CrossRefGoogle Scholar
  2. 2.
    Verellen, D., Depuydt, T., Gevaert, T., Linthout, N., Tournel, K., Duchateau, M., Reynders, T., Storme, G., Ridder, M.D.: Gating and tracking, 4D in thoracic tumours. Cancer Radiother. 14(67), 446–454 (2010)CrossRefGoogle Scholar
  3. 3.
    Willoughby, T.R., Forbes, A.R., Buchholz, D., Langen, K.M., Wagner, T.H., Zeidan, O.A., Kupelian, P.A., Meeks, S.L.: Evaluation of an infrared camera and X-ray system using implanted fiducials in patients with lung tumors for gated radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 66(2), 568–575 (2006)CrossRefGoogle Scholar
  4. 4.
    Brahme, A., Nyman, P., Skatt, B.: 4D laser camera for accurate patient positioning, collision avoidance, image fusion and adaptive approaches during diagnostic and therapeutic procedures. Med. Phys. 35(5), 1670–1681 (2008)CrossRefGoogle Scholar
  5. 5.
    Moser, T., Fleischhacker, S., Schubert, K., Sroka-Perez, G., Karger, C.P.: Technical performance of a commercial laser surface scanning system for patient setup correction in radiotherapy. Phys. Med. 27(4), 224–232 (2011)CrossRefGoogle Scholar
  6. 6.
    Peng, J.L., Kahler, D., Li, J.G., Samant, S., Yan, G., Amdur, R., Liu, C.: Characterization of a real-time surface image-guided stereotactic positioning system. Med. Phys. 37(10), 5421–5433 (2010)CrossRefGoogle Scholar
  7. 7.
    Fayad, H., Pan, T., Clement, J.F., Visvikis, D.: Correlation of respiratory motion between external patient surface and internal anatomical landmarks. Med. Phys. 38(6), 3157–3164 (2011)CrossRefGoogle Scholar
  8. 8.
    Schaerer, J., Fassi, A., Riboldi, M., Cerveri, P., Baroni, G., Sarrut, D.: Multidimensional respiratory motion tracking from markerless optical surface imaging based on deformable mesh registration. Phys. Med. Biol. 57(2), 357–373 (2012)CrossRefGoogle Scholar
  9. 9.
    Bauer, S., Berkels, B., Hornegger, J., Rumpf, M.: Joint ToF Image Denoising and Registration with a CT Surface in Radiation Therapy. In: Bruckstein, A.M., ter Haar Romeny, B.M., Bronstein, A.M., Bronstein, M.M. (eds.) SSVM 2011. LNCS, vol. 6667, pp. 98–109. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Cachier, P., Rey, D.: Symmetrization of the Non-rigid Registration Problem Using Inversion-Invariant Energies: Application to Multiple Sclerosis. In: Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds.) MICCAI 2000. LNCS, vol. 1935, pp. 472–481. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  11. 11.
    Christensen, G., Johnson, H.: Consistent image registration. IEEE Trans. Med. Imaging 20(7), 568–582 (2001)CrossRefGoogle Scholar
  12. 12.
    Modersitzki, J., Fischer, B.: Curvature based image registration. Journal of Mathematical Imaging and Vision 18(1), 81–85 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Ettl, S., Arold, O., Yang, Z., Häusler, G.: Flying triangulation–an optical 3D sensor for the motion-robust acquisition of complex objects. Appl. Opt. 51(2), 281–289 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Sebastian Bauer
    • 1
  • Benjamin Berkels
    • 3
  • Svenja Ettl
    • 2
  • Oliver Arold
    • 2
  • Joachim Hornegger
    • 1
  • Martin Rumpf
    • 4
  1. 1.Dept. of Computer SciencePattern Recognition LabGermany
  2. 2.Institute of Optics, Information and PhotonicsFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany
  3. 3.Interdisciplinary Mathematics InstituteUniversity of South CarolinaColumbiaUSA
  4. 4.Institute for Numerical SimulationRheinische Friedrich-Wilhelms-Universität BonnBonnGermany

Personalised recommendations