Anisotropic ssTEM Image Segmentation Using Dense Correspondence across Sections

  • Dmitry Laptev
  • Alexander Vezhnevets
  • Sarvesh Dwivedi
  • Joachim M. Buhmann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7510)

Abstract

Connectomics based on high resolution ssTEM imagery requires reconstruction of the neuron geometry from histological slides. We present an approach for the automatic membrane segmentation in anisotropic stacks of electron microscopy brain tissue sections. The ambiguities in neuronal segmentation of a section are resolved by using the context from the neighboring sections. We find the global dense correspondence between the sections by SIFT Flow algorithm, evaluate the features of the corresponding pixels and use them to perform the segmentation. Our method is 3.6 and 6.4% more accurate in two different accuracy metrics than the algorithm with no context from other sections.

Keywords

Membrane Segmentation Anisotropic Data Dense Correspondence SIFT Flow 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Dmitry Laptev
    • 1
  • Alexander Vezhnevets
    • 1
  • Sarvesh Dwivedi
    • 1
  • Joachim M. Buhmann
    • 1
  1. 1.Department of Computer ScienceETH ZurichSwitzerland

Personalised recommendations