Advertisement

Compensating Motion Artifacts of 3D in vivo SD-OCT Scans

  • O. Müller
  • S. Donner
  • T. Klinder
  • I. Bartsch
  • A. Krüger
  • A. Heisterkamp
  • B. Rosenhahn
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7510)

Abstract

We propose a probabilistic approach for compensating motion artifacts in 3D in vivo SD-OCT (spectral-domain optical coherence tomography) tomographs. Subject movement causing axial image shifting is a major problem for in vivo imaging. Our technique is applied to analyze the tissue at percutaneous implants recorded with SD-OCT in 3D. The key challenge is to distinguish between motion and the natural 3D spatial structure of the scanned subject. To achieve this, the motion estimation problem is formulated as a conditional random field (CRF). For efficient inference, the CRF is approximated by a Gaussian Markov random field. The method is verified on synthetic datasets and applied on noisy in vivo recordings showing significant reduction of motion artifacts while preserving the tissue geometry.

Keywords

Optical Coherence Tomography Ground Truth Mutual Information Motion Artifact Motion Compensation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Yun, S.H., Tearney, G.J., de Boer, J.F., Bouma, B.E.: Motion artifacts in optical coherence tomography with frequency-domain ranging. Optics Express 12, 2977 (2004)CrossRefGoogle Scholar
  2. 2.
    Ricco, S., Chen, M., Ishikawa, H., Wollstein, G., Schuman, J.: Correcting Motion Artifacts in Retinal Spectral Domain Optical Coherence Tomography via Image Registration. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009, Part I. LNCS, vol. 5761, pp. 100–107. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Lee, J., Srinivasan, V., Radhakrishnan, H., Boas, D.A.: Motion correction for phase-resolved dynamic optical coherence tomography imaging of rodent cerebral cortex. Optics Express 19(22), 21258–21270 (2011)CrossRefGoogle Scholar
  4. 4.
    Kraus, M.F., Potsaid, B., Mayer, M.A., Bock, R., Baumann, B., Liu, J.J., Hornegger, J., Fujimoto, J.G.: Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns. Biomedical Optics Express 3(6), 1182–1199 (2012)CrossRefGoogle Scholar
  5. 5.
    Rue, H., Held, L.: Gaussian Markov Random Fields: Theory and Applications. Chapman & Hall/CRC, Boca Raton (2005)MATHCrossRefGoogle Scholar
  6. 6.
    Müller, O., Donner, S., Klinder, T., Dragon, R., Bartsch, I., Witte, F., Krüger, A., Heisterkamp, A., Rosenhahn, B.: Model Based 3D Segmentation and OCT Image Undistortion of Percutaneous Implants. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part III. LNCS, vol. 6893, pp. 454–462. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • O. Müller
    • 1
  • S. Donner
    • 2
    • 3
  • T. Klinder
    • 4
  • I. Bartsch
    • 3
  • A. Krüger
    • 2
    • 3
  • A. Heisterkamp
    • 2
    • 3
  • B. Rosenhahn
    • 1
  1. 1.Institut für InformationsverarbeitungLeibniz Universität HannoverGermany
  2. 2.Laser Zentrum Hannover e.V.Germany
  3. 3.CrossBITHannover Medical SchoolGermany
  4. 4.Philips Research HamburgGermany

Personalised recommendations