Spatiotemporal Reconstruction of the Breathing Function

  • D. Duong
  • D. Shastri
  • P. Tsiamyrtzis
  • I. Pavlidis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7510)

Abstract

Breathing waveform extracted via nasal thermistor is the most common method to study respiratory function in sleep studies. In essence, this is a temporal waveform of mean temperatures in the nostril region that at every time step collapses two-dimensional data into a single point. Hence, spatial heat distribution in the nostrils is lost along with valuable functional and anatomical cues. This article presents the construction and experimental validation of a spatiotemporal profile for the breathing function via thermal imaging of the nostrils. The method models nasal airflow advection by using a front-propagating level set algorithm with optimal parameter selection. It is the first time that the full two-dimensional advantage of thermal imaging is brought to the fore in breathing computation. This new multi-dimensional measure is likely to bring diagnostic value in sleep studies and beyond.

Keywords

Breathing data visualization sleep studies thermal imaging 

References

  1. 1.
    Murthy, J., Van Jaarsveld, J., Fei, J., Pavlidis, I., Harrykissoon, R., Lucke, J., Faiz, S., Castriotta, R.: Thermal Infrared Imaging: A Novel Method to Monitor Airflow During Polysomnography. Sleep 32(11), 1521–1527 (2009)Google Scholar
  2. 2.
    Fei, J., Pavlidis, I.: Thermistor at a Distance: Unobtrusive Measurement of Breathing. IEEE Transactions on Biomedical Engineering 57(4), 988–998 (2010)CrossRefGoogle Scholar
  3. 3.
    Rappai, M., Collop, N., Kemp, S., de Shazo, R.: The Nose and Sleep-disordered Breathing: What We Know and What We Do Not Know. Chest 124(6), 2309–2323 (2003)CrossRefGoogle Scholar
  4. 4.
    Farre, R., Montserrat, J.M., Rotger, M., Ballester, E., Navajas, D.: Accuracy of Thermistors and Thermocouples as Flow-measuring Devices for Detecting Hypopnoeas. European Respiratory Journal 11(1), 179–182 (1998)CrossRefGoogle Scholar
  5. 5.
    Chan, T.F., Vese, L.A.: Active Contours Without Edges. IEEE Transactions on Image Processing 10(2), 266–277 (2001)MATHCrossRefGoogle Scholar
  6. 6.
    Reddy, B., Chatterji, B.: An FFT-based Technique for Translation, Rotation, and Scale-invariant Image Registration. IEEE Transactions on Image Processing 5(8), 1266–1271 (1996)CrossRefGoogle Scholar
  7. 7.
    Kass, M., Witkin, W., Terzopoulos, D.: Active Contour Models. International Journal of Computer Vision 1(4), 321–331 (1988)CrossRefGoogle Scholar
  8. 8.
    Nowlan, S.: Soft Competitive Adaptation: Neural Network Learning Algorithms Based on Fitting Statistical Mixtures. PhD thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh (1991)Google Scholar
  9. 9.
    FLIR Systems, http://www.flir.com
  10. 10.
    Unnikrishnan, R., Pantofaru, C., Hebert, M.: Toward Objective Evaluation of Image Segmentation Algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(1), 929–944 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • D. Duong
    • 1
  • D. Shastri
    • 2
  • P. Tsiamyrtzis
    • 3
  • I. Pavlidis
    • 1
  1. 1.Department of Computer ScienceUniversity of HoustonHoustonUSA
  2. 2.Department of Computer and Mathematical SciencesUniversity of Houston-DowntownHoustonUSA
  3. 3.Department of StatisticsAthens University of Economics and BusinessAthensGreece

Personalised recommendations