Abstract

We study the cutting problems of meanders using 2-Motzkin words. These words uniquely define elevated peakless Motzkin paths, which under specific conditions correspond to meanders. A procedure for the determination of the set of meanders with a given sequence of cutting degrees, or with a given cutting degree, is presented by using proper conditions.

Keywords

Dyck path Grand Dyck path 2-Motzkin word elevated peakless Motzkin path 

References

  1. 1.
    Delest, M.-P., Viennot, G.: Algebraic languages and polyominoes enumeration. Theoret. Comput. Sci. 34, 169–206 (1984)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Donaghey, R., Shapiro, L.W.: Motzkin numbers. J. Combin. Theory, Ser. A 23, 291–301 (1977)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Jiang, T., Lin, G.H., Ma, B., Zhang, K.: A general edit distance between RNA structures. Journal of Computational Biology 9(2), 371–388 (2002)CrossRefGoogle Scholar
  4. 4.
    Lando, S., Zvonkin, A.: Plane and projective meanders. Theoret. Comput. Sci. 117, 227–241 (1993)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Nebel, M.E.: Combinatorial Properties of RNA Secondary Structures. Journal of Computational Biology 9, 541–573 (2001)CrossRefGoogle Scholar
  6. 6.
    Panayotopoulos, A., Tsikouras, P.: The multimatching property of nested sets. Math. & Sci. Hum. 149, 23–30 (2000)MathSciNetMATHGoogle Scholar
  7. 7.
    Panayotopoulos, A., Tsikouras, P.: Properties of meanders. JCMCC 46, 181–190 (2003)MathSciNetMATHGoogle Scholar
  8. 8.
    Panayotopoulos, A., Tsikouras, P.: Meanders and Motzkin words. J. Integer Seq. 7, Article 04.1.2 (2004)Google Scholar
  9. 9.
    Panayotopoulos, A., Vlamos, P.: Meandric polygons. Ars Combinatoria 87, 147–159 (2008)MathSciNetMATHGoogle Scholar
  10. 10.
    Sloane, N.: The Online-Encyclopedia of Integer Sequences, published electronically at www.research.att.com/~njas/sequences/
  11. 11.
    Stein, P.R., Waterman, M.S.: On some new sequences generalizing the Catalan and Motzkin numbers. Discrete Math. 26, 261–272 (1978)MathSciNetCrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2012

Authors and Affiliations

  • A. Panayotopoulos
    • 1
  • Panayiotis Vlamos
    • 2
  1. 1.University of PiraeusPiraeusGreece
  2. 2.Department of InformaticsIonian UniversityCorfuGreece

Personalised recommendations