Experiments with Face Recognition Using a Novel Approach Based on CVQ Technique

  • Arman Mehrbakhsh
  • Alireza Khalilian
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 381)


Face recognition techniques attempt to identify faces according to the patterns of mouth, lip, eyes and so on. However, the effectiveness of existing approaches degrades in presence of uncontrolled conditions such as variations of background light and image sizes. To deal with this problem, we propose a novel approach based on Classified Vector Quantization (CVQ) technique. The new approach divides images into some blocks and each block is classified into several patterns. Then, the Vector Quantization (VQ) technique is applied on the vectors of each pattern. In order to evaluate our approach, we have conducted a family of experiments on some standard image databases, MIT, YALE, and AR. The results demonstrate that the new approach is steadily capable of identifying faces in different situations.


Face Recognition Classified Vector Quantization (CVQ) Vector Quantization (VQ) 


  1. 1.
    Zhao, W., Chellappa, R., Phillips, P.J., Rosenfeld, A.: Face recognition: A literature survey. ACM Comput. Surv. 35(4), 399–458 (2003)CrossRefGoogle Scholar
  2. 2.
    Estudillo-Romero, A., Escalante-Ramirez, B.: The Hermite Transform: An Alternative Image Representation Model for Iris Recognition. In: Ruiz-Shulcloper, J., Kropatsch, W.G. (eds.) CIARP 2008. LNCS, vol. 5197, pp. 86–93. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Bevilacqua, V., Cariello, L., Carro, G., Daleno, D., Mastronardi, G.: A face recognition system based on Pseudo 2D HMM applied to neural network coefficients. Soft Comput. 12(7), 615–621 (2008)CrossRefGoogle Scholar
  4. 4.
    Roy, K., Bhattacharya, P.: Optimal Features Subset Selection Using Genetic Algorithms for Iris Recognition. In: Campilho, A., Kamel, M.S. (eds.) ICIAR 2008. LNCS, vol. 5112, pp. 894–904. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Attarchi, S., Nosrati, M.S., Faez, K.: A New Ear Recognition Approach for Personal Identification. In: Huang, D.-S., Wunsch II, D.C., Levine, D.S., Jo, K.-H. (eds.) ICIC 2008. LNCS, vol. 5226, pp. 356–363. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Butavicius, M., Mount, C., MacLeod, V., Vast, R., Graves, I., Sunde, J.: An Experiment on Human Face Recognition Performance for Access Control. In: Lovrek, I., Howlett, R.J., Jain, L.C. (eds.) KES 2008, Part I. LNCS (LNAI), vol. 5177, pp. 141–148. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Blackburn, T., Butavicius, M., Graves, I., Hemming, D., Ivancevic, V., Johnson, R., Kaine, A., McLindin, B., Meaney, K., Smith, B., Sunde, J.: Biometrics Technology Review, DSTO Systems Science Laboratory, Australia (2002)Google Scholar
  8. 8.
    Lim, S., Lee, K., Byeon, O., Kim, T.: Efficient Iris Recognition through Improvement of Feature Vector and Classifier. ETRI Journal 23(2), 61–70 (2001)CrossRefGoogle Scholar
  9. 9.
    Ma, L., Tan, T., Wang, Y., Zhang, D.: Efficient iris recognition by characterizing key local variations. IEEE Trans. Image Proc. 13(6), 739–750 (2004)CrossRefGoogle Scholar
  10. 10.
    Lu, Y.Z.: A Novel Face Recognition Algorithm for Distinguishing Faces with Various Angles. International Journal of Automation and Computing 5(2), 193–197 (2008)CrossRefGoogle Scholar
  11. 11.
    Gersho, A., Gray, R.M.: Vector Quantization and Signal Compression. Kluwer Academic Publishers, Norwell (1991)Google Scholar
  12. 12.
    Jushi, M.A.: Digital image processing An algorithmic approach. Prentice-Hall Publishing (2006)Google Scholar
  13. 13.
    Hsieh, Y.P., Chang, C.C., Liu, L.J.: A two-codebook combination and three-phase block matching based image-hiding scheme with high embedding capacity. Pattern Recogn. 41(10), 3104–3113 (2008)zbMATHCrossRefGoogle Scholar
  14. 14.
    Kekre, H.B., Sarode, T.K.: Fast codevector search algorithm for 3-D Vector Quantized codebook. International Journal of Computer and Information Science and Engineering, 235–239 (2008)Google Scholar
  15. 15.
    Chang, C., Wu, W.: Fast plannar-oriented ripple search algorithm for Hyperspace VQ codebook. IEEE Trans. Image Proc. 16(6), 1538–1547 (2007)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Ramamurthi, B., Gersho, A.: Classified Vector Quantization of images. IEEE Trans. Communucations 34(11), 1105–1115 (1986)CrossRefGoogle Scholar
  17. 17.
    Quweither, M.K., Farison, J.B.: Classified Vector Quantization using Principal components. Electronics Letters 34(6), 538–540 (1998)CrossRefGoogle Scholar
  18. 18.
    Kim, J.W., Lee, S.U.: A transform domain Classified vector Quantizer for image coding. IEEE Trans. Circuits and Systems for Video Technology 2(1), 3–14 (1992)CrossRefGoogle Scholar
  19. 19.
    Kim, S., Lee, S.U.: Image Vector Quantizer based on a classification in the DCT domain. IEEE Trans. Communications 39(4), 549–556 (1991)CrossRefGoogle Scholar
  20. 20.
    Young, A.W., Hay, D.C., McWeeny, K.H., Flude, B.M., Ellis, A.W.: Matching familiar and unfamiliar faces on internal and external features. Perception 14(6), 737–746 (1985)CrossRefGoogle Scholar
  21. 21.
    Davies, G., Ellis, H., Shepherd, J.: Cue saliency in faces as assessed by the “Photofit” technique. Perception 6(3), 263–269 (1977)CrossRefGoogle Scholar
  22. 22.
    Nasrabadi, N., King, R.: Image coding using vector quantization: A review. IEEE Trans. Communications 36(8), 957–971 (1988)CrossRefGoogle Scholar
  23. 23.
    Tseng, H., Chang, C.: A Very Low Bit Rate Image Compressor Using Transformed Classified Vector Quantization. Informatica, 335–342 (2005)Google Scholar
  24. 24.
    Kim, J.W., Lee, S.U.: A transform domain classified vector quantizer for image coding. IEEE Trans. Circuits and Systems for Video Technology 2(1), 3–14 (1992)CrossRefGoogle Scholar
  25. 25.
    Kanade, T.: Picture processing by computer complex and recognition of human faces. Ph.D. dissertation (1973)Google Scholar
  26. 26.
    Brunelli, R., Poggio, T.: Face recognition through geometrical features. In: European Conference on Computer Vision (1992)Google Scholar
  27. 27.
    Heenaye-Mamode Khan, M., Subramanian, R.K., Ali Mamode Khan, N.: Representation of Hand Dorsal Vein Features Using a Low Dimensional Representation Integrating Cholesky Decomposition. In: 2nd International Congress on Image and Signal Processing, CISP 2009 (2009)Google Scholar
  28. 28.
    Hong, L., Jian, A., Pankanti, S., Bolle, R.: Fingerprint enhancement. In: Proceedings 3rd IEEE Workshop on Applications of Computer Vision, WACV 1996 (1996)Google Scholar
  29. 29.
    Ito, K., Morita, A., Aoki, T., Higuchi, T., Nakajima, H., Kobayashi, K.: A fingerprint recognition algorithm using phase-based image matching for low-quality fingerprints. In: IEEE International Conference on Image Processing, ICIP 2005 (2005)Google Scholar
  30. 30.
    Jain, A.K., Duin, R.P.W., Mao, J.: Statistical Pattern Recognition: A Review. IEEE Transactions on Pattern ANALYSIS and Machine Intelligence 22(1) (January 2000)Google Scholar
  31. 31.
    Guo, G.-D., Zhang, H.-J.: Boosting for fast face recognition. In: Proceedings of the IEEE ICCV Workshop (2001)Google Scholar
  32. 32.
    Watanabe, E., Kodate, K.: Ultra-fast facial recognition system based on VanderLugt Correlator. In: CLEO/Pacific Rim 2003 - The 5th Pacific Rim Conference on Lasers and Electro-Optics (2003)Google Scholar
  33. 33.
    Momeni, H., Sadeghi, M.T., Abutalebi, H.R.: Fast face recognition using a combination of image pyramid and hierarchical clustering algorithms. In: International Conference on Wireless Communications & Signal Processing, WCSP 2009 (2009)Google Scholar
  34. 34.
    Sani, M.M., Ishak, K.A., Samad, S.A.: Evaluation of face recognition system using Support Vector Machine. In: 2009 IEEE Student Conference on Research and Development, SCOReD (2009)Google Scholar
  35. 35.
    Phillips, P.: The FERET Evaluation Methodology for Face-Recognition Algorithms. IEEE Transaction 22 (2000)Google Scholar
  36. 36.
    Utsumi, Y., Iwai, Y., Yachida, M.: Performance Evaluation of Face Recognition in the Wavelet Domain. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems (2006)Google Scholar
  37. 37.
    Dewi Agushinta, R., Suhendra, A., Madenda, S., Suryadi, H.S.: Face Component Extraction Using Segmentation Method on Face Recognition System. Journal of Emerging Trends in Computing and Information Sciences (2011)Google Scholar
  38. 38.
    Ali, M., Javed, M.Y., Basit, A.: Ear Recognition Using Wavelets. In: Proceedings of Image and Visioin Computing (2007)Google Scholar
  39. 39.
    Zhong, Z., Ding, N., Wu, X., Xu, Y.: Crowd surveillance using Markov Random Fields. In: IEEE International Conference on Automation and Logistics, ICAL 2008 (2008)Google Scholar
  40. 40.
    Daygman, J.G.: High Confidence Visual Recognition of persons by a test of Statistical Independence. IEEE Transaction (1993)Google Scholar
  41. 41.
    Makwana, M.V., Nandurbarkar, A.B., Joshi, S.M., Coll, L.E.: Image Compression Using Tree Structured Vector Quantization with Compact Codebook. In: International Conference on Computational Intelligence and Multimedia Applications (2007)Google Scholar
  42. 42.
    Chen, J.-Y., Bouman, C.A., Allebach, J.P.: Fast image database search using tree-structured VQ. In: Proceedings of the International Conference on Image Processing (1997)Google Scholar
  43. 43.
    Park, U., Jain, A.K.: 3D Face Reconstruction from Stereo Video. In: The 3rd Canadian Conference on Computer and Robot Vision (2006)Google Scholar
  44. 44.
    Zhao, M., Chua, T.-S., Sim, T.: Morphable Face Reconstruction with Multiple Images. In: Proceedings of the 7th International Conference on Automatic Face and Gesture Recognition (2006)Google Scholar
  45. 45.
    Wang, S.-F., Lai, S.-H.: Reconstructing 3D Face Model with Associated Expression Deformation from a Single Face Image via Constructing a Low-Dimensional Expression Deformation Manifold. IEEE Transactions on Pattern Analysis and Machine Intelligence (2011)Google Scholar
  46. 46.
    Weingessel, A., Hornik, K.: Local PCA algorithms. IEEE Transactions on Neural Networks (2000)Google Scholar
  47. 47.
    Diamantaras, K.I., Kung, S.Y.: Principal Component Neural Networks: Theory and Applications. John Wiley & Sons, Inc. (1996)Google Scholar
  48. 48.
    Lu, J., Plataniotis, K.N., Venetsanopoulos, A.N.: Face Recognition Using LDA Based Algorithms. IEEE Transactions on Neural Networks (2002)Google Scholar
  49. 49.
    Martinez, A.M., Kak, A.C.: PCA versus LDA. IEEE Transactions on Pattern Analysis and Machine Intelligence (2001)Google Scholar
  50. 50.
    Lindeberg, T.: Edge Detection and Ridge Detection with Automatic Scale Selection. In: 1996 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (1996)Google Scholar
  51. 51.
    Martinez, A.M., Benavente, R.: The AR Face Database. CVC Technical Report #24 (1998)Google Scholar
  52. 52.
    Pissarenko, D.: Face databases (2003)Google Scholar
  53. 53.

Copyright information

© IFIP International Federation for Information Processing 2012

Authors and Affiliations

  • Arman Mehrbakhsh
    • 1
  • Alireza Khalilian
    • 2
  1. 1.Sama Technical and Vocational Training CollegeIslamic Azad UniversityTehranIran
  2. 2.School of Computer EngineeringIran University of Science and TechnologyTehranIran

Personalised recommendations