Rabinizer: Small Deterministic Automata for LTL(F,G)

  • Andreas Gaiser
  • Jan Křetínský
  • Javier Esparza
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7561)

Abstract

We present Rabinizer, a tool for translating formulae of the fragment of linear temporal logic with the operators F (eventually) and G (globally) into deterministic Rabin automata. Contrary to tools like ltl2dstar, which translate the formula into a Büchi automaton and apply Safra’s determinization procedure, Rabinizer uses a direct construction based on the logical structure of the formulae. We describe a number of optimizations of the basic procedure, crucial for the good performance of Rabinizer, and present an experimental comparison.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Althoff, C.S., Thomas, W., Wallmeier, N.: Observations on determinization of Büchi automata. Theor. Comput. Sci. 363(2), 224–233 (2006)CrossRefMATHGoogle Scholar
  2. 2.
    Babiak, T., Křetínský, M., Řehák, V., Strejček, J.: LTL to Büchi Automata Translation: Fast and More Deterministic. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 95–109. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. 3.
    Baier, C., Katoen, J.-P.: Principles of model checking. MIT Press (2008)Google Scholar
  4. 4.
    Gastin, P., Oddoux, D.: Fast LTL to Büchi Automata Translation. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53–65. Springer, Heidelberg (2001), http://www.lsv.ens-cachan.fr/~gastin/ltl2ba/ CrossRefGoogle Scholar
  5. 5.
    Klein, J.: ltl2dstar - LTL to deterministic Streett and Rabin automata, http://www.ltl2dstar.de/
  6. 6.
    Klein, J., Baier, C.: Experiments with deterministic ω-automata for formulas of linear temporal logic. Theor. Comput. Sci. 363(2), 182–195 (2006)CrossRefMathSciNetMATHGoogle Scholar
  7. 7.
    Křetínský, J., Esparza, J.: Deterministic Automata for the (F,G)-Fragment of LTL. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 7–22. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of Probabilistic Real-Time Systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Pelánek, R.: BEEM: Benchmarks for explicit model checkers. In: Bošnački, D., Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 263–267. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Safra, S.: On the complexity of ω-automata. In: FOCS, pp. 319–327 (1988)Google Scholar
  11. 11.
    Somenzi, F., Bloem, R.: Efficient Büchi Automata from LTL Formulae. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 248–263. Springer, Heidelberg (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Andreas Gaiser
    • 1
  • Jan Křetínský
    • 1
    • 2
  • Javier Esparza
    • 1
  1. 1.Institut für InformatikTechnische Universität MünchenGermany
  2. 2.Faculty of InformaticsMasaryk UniversityBrnoCzech Republic

Personalised recommendations