Advertisement

A Succinct Canonical Register Automaton Model for Data Domains with Binary Relations

  • Sofia Cassel
  • Bengt Jonsson
  • Falk Howar
  • Bernhard Steffen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7561)

Abstract

We present a novel canonical automaton model for languages over infinite data domains, that is suitable for specifying the behavior of services, protocol components, interfaces, etc. The model is based on register automata. A major contribution is a construction of succinct canonical register automata, which is parameterized on the set of relations by which elements in the data domain can be compared. We also present a Myhill Nerode-like theorem, from which minimal canonical automata can be constructed. This canonical form is as expressive as general deterministic register automata, but much better suited for modeling in practice since we lift many of the restrictions on the way variables can be accesed and stored: this allows our automata to be significantly more succinct than previously proposed canonical forms. Key to the canonical form is a symbolic treatment of data languages, which allows us to construct minimal representations whenever the set of relations can be equipped with a so-called branching framework.

Keywords

Canonical Form Binary Relation Formal Parameter Total Order Regular Language 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer Science 126, 183–235 (1994)CrossRefMathSciNetzbMATHGoogle Scholar
  2. 2.
    Angluin, D.: Learning regular sets from queries and counterexamples. Information and Computation 75(2), 87–106 (1987)CrossRefMathSciNetzbMATHGoogle Scholar
  3. 3.
    Benedikt, M., Ley, C., Puppis, G.: What you must remember when processing data words. In: Proc. 4th Alberto Mendelzon Int. Workshop on Foundations of Data Management, Buenos Aires, Argentina. CEUR Workshop Proceedings, vol. 619 (2010)Google Scholar
  4. 4.
    Björklund, H., Schwentick, T.: On notions of regularity for data languages. Theoretical Computer Science 411, 702–715 (2010)CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    Bojanczyk, M., David, C., Muscholl, A., Schwentick, T., Segoufin, L.: Two-variable logic on data words. ACM Trans. Comput. Log. 12(4), 27 (2011)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Bojanczyk, M., Klin, B., Lasota, S.: Automata with group actions. In: LICS, pp. 355–364. IEEE Computer Society (2011)Google Scholar
  7. 7.
    Cassel, S., Howar, F., Jonsson, B., Merten, M., Steffen, B.: A Succinct Canonical Register Automaton Model. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 366–380. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Francez, N., Kaminski, M.: An algebraic characterization of deterministic regular languages over infinite alphabets. Theoretical Computer Science 306(1-3), 155–175 (2003)CrossRefMathSciNetzbMATHGoogle Scholar
  9. 9.
    Gold, E.M.: Language identification in the limit. Information and Control 10(5), 447–474 (1967)CrossRefzbMATHGoogle Scholar
  10. 10.
    Grumberg, O., Kupferman, O., Sheinvald, S.: Variable Automata over Infinite Alphabets. In: Dediu, A.-H., Fernau, H., Martín-Vide, C. (eds.) LATA 2010. LNCS, vol. 6031, pp. 561–572. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Hopcroft, J., Ullman, J.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley (1979)Google Scholar
  12. 12.
    Howar, F., Steffen, B., Jonsson, B., Cassel, S.: Inferring Canonical Register Automata. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 251–266. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Kaminski, M., Francez, N.: Finite-memory automata. Theoretical Computer Science 134(2), 329–363 (1994)CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    Kanellakis, P., Smolka, S.: CCS expressions, finite state processes, and three problems of equivalence. Information and Computation 86(1), 43–68 (1990)CrossRefMathSciNetzbMATHGoogle Scholar
  15. 15.
    Lazić, R.S., Nowak, D.: A Unifying Approach to Data-Independence. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 581–595. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  16. 16.
    Nerode, A.: Linear Automaton Transformations. Proceedings of the American Mathematical Society 9(4), 541–544 (1958)CrossRefMathSciNetzbMATHGoogle Scholar
  17. 17.
    Paige, R., Tarjan, R.: Three partition refinement algorithms. SIAM Journal of Computing 16(6), 973–989 (1987)CrossRefMathSciNetzbMATHGoogle Scholar
  18. 18.
    Petrenko, A., Boroday, S., Groz, R.: Confirming configurations in EFSM testing. IEEE Trans. on Software Engineering 30(1), 29–42 (2004)CrossRefGoogle Scholar
  19. 19.
    Rivest, R., Schapire, R.: Inference of finite automata using homing sequences. Information and Computation 103(2), 299–347 (1993)CrossRefMathSciNetzbMATHGoogle Scholar
  20. 20.
    Segoufin, L.: Automata and Logics for Words and Trees over an Infinite Alphabet. In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 41–57. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  21. 21.
    Wilke, T.: Specifying Timed State Sequences in Powerful Decidable Logics and Timed Automata. In: Langmaack, H., de Roever, W.-P., Vytopil, J. (eds.) FTRTFT 1994 and ProCoS 1994. LNCS, vol. 863, pp. 694–715. Springer, Heidelberg (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Sofia Cassel
    • 1
  • Bengt Jonsson
    • 1
  • Falk Howar
    • 2
  • Bernhard Steffen
    • 2
  1. 1.Dept. of Information TechnologyUppsala UniversitySweden
  2. 2.Chair for Programming SystemsTechnical University DortmundGermany

Personalised recommendations