Advertisement

Equivalence of Games with Probabilistic Uncertainty and Partial-Observation Games

  • Krishnendu Chatterjee
  • Martin Chmelík
  • Rupak Majumdar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7561)

Abstract

We introduce games with probabilistic uncertainty, a model for controller synthesis in which the controller observes the state through imprecise sensors that provide correct information about the current state with a fixed probability. That is, in each step, the sensors return an observed state, and given the observed state, there is a probability distribution (due to the estimation error) over the actual current state. The controller must base its decision on the observed state (rather than the actual current state, which it does not know). On the other hand, we assume that the environment can perfectly observe the current state. We show that controller synthesis for qualitative ω-regular objectives in our model can be reduced in polynomial time to standard partial-observation stochastic games, and vice-versa. As a consequence we establish the precise decidability frontier for the new class of games, and establish optimal complexity results for all the decidable problems.

Keywords

Probability Measure Pure Strategy Markov Decision Process Stochastic Game Observation Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baier, C., Bertrand, N., Größer, M.: On Decision Problems for Probabilistic Büchi Automata. In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 287–301. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Bertrand, N., Genest, B., Gimbert, H.: Qualitative determinacy and decidability of stochastic games with signals. In: LICS, pp. 319–328. IEEE Computer Society (2009)Google Scholar
  3. 3.
    Berwanger, D., Doyen, L.: On the power of imperfect information. In: FSTTCS, Dagstuhl Seminar Proceedings 08004. IBFI (2008)Google Scholar
  4. 4.
    Billingsley, P.: Probability and Measure. Wiley-Interscience (1995)Google Scholar
  5. 5.
    Büchi, J.R., Landweber, L.H.: Solving sequential conditions by finite-state strategies. Transactions of the AMS 138, 295–311 (1969)CrossRefzbMATHGoogle Scholar
  6. 6.
    Chatterjee, K., Chmelik, M., Majumdar, R.: Equivalence of games with probabilistic uncertainty and partial-observation games. CoRR, abs/1202.4140 (2012)Google Scholar
  7. 7.
    Chatterjee, K., Doyen, L., Henzinger, T.A.: Qualitative Analysis of Partially-Observable Markov Decision Processes. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 258–269. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Chatterjee, K., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Algorithms for omega-regular games of incomplete information. LMCS 3 (2007)Google Scholar
  9. 9.
    Condon, A.: The complexity of stochastic games. I. & C. 96(2), 203–224 (1992)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. Journal of the ACM 42(4), 857–907 (1995)CrossRefMathSciNetzbMATHGoogle Scholar
  11. 11.
    de Alfaro, L., Henzinger, T.A., Kupferman, O.: Concurrent reachability games. TCS 386(3), 188–217 (2007)CrossRefzbMATHGoogle Scholar
  12. 12.
    de Alfaro, L., Majumdar, R.: Quantitative solution of omega-regular games. In: STOC 2001, pp. 675–683. ACM Press (2001)Google Scholar
  13. 13.
    Filar, J., Vrieze, K.: Competitive Markov Decision Processes. Springer (1997)Google Scholar
  14. 14.
    Kupferman, O., Vardi, M.Y.: μ-Calculus Synthesis. In: Nielsen, M., Rovan, B. (eds.) MFCS 2000. LNCS, vol. 1893, pp. 497–507. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  15. 15.
    Rabin, M.O.: Automata on Infinite Objects and Church’s Problem. Conference Series in Mathematics, vol. 13. American Mathematical Society (1969)Google Scholar
  16. 16.
    Reif, J.H.: Universal games of incomplete information. In: STOC, pp. 288–308. ACM Press (1979)Google Scholar
  17. 17.
    Thomas, W.: Languages, automata, and logic. In: Handbook of Formal Languages. Beyond Words, vol. 3, ch. 7, pp. 389–455. Springer (1997)Google Scholar
  18. 18.
    Vardi, M.Y.: Automatic verification of probabilistic concurrent finite-state systems. In: FOCS 1985, pp. 327–338. IEEE Computer Society Press (1985)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Krishnendu Chatterjee
    • 1
  • Martin Chmelík
    • 1
  • Rupak Majumdar
    • 2
  1. 1.IST Austria (Institute of Science and Technology Austria)Austria
  2. 2.MPI-SWSGermany

Personalised recommendations