ALLQBF Solving by Computational Learning
Abstract
In the last years, search-based QBF solvers have become essential for many applications in the formal methods domain. The exploitation of their reasoning efficiency has however been restricted to applications in which a “satisfiable/unsatisfiable” answer or one model of an open quantified Boolean formula suffices as an outcome, whereas applications in which a compact representation of all models is required could not be tackled with QBF solvers so far.
In this paper, we describe how computational learning provides a remedy to this problem. Our algorithms employ a search-based QBF solver and learn the set of all models of a given open QBF problem in a CNF (conjunctive normal form), DNF (disjunctive normal form), or CDNF (conjunction of DNFs) representation. We evaluate our approach experimentally using benchmarks from synthesis of finite-state systems from temporal logic and monitor computation.
Keywords
QBF Computational learning QBF model enumerationPreview
Unable to display preview. Download preview PDF.
References
- 1.Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic Model Checking without BDDs. In: Rance Cleaveland, W. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer, Heidelberg (1999)CrossRefGoogle Scholar
- 2.Brauer, J., King, A., Kriener, J.: Existential Quantification as Incremental SAT. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 191–207. Springer, Heidelberg (2011)CrossRefGoogle Scholar
- 3.McMillan, K.L.: Applying SAT Methods in Unbounded Symbolic Model Checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 250–264. Springer, Heidelberg (2002)CrossRefGoogle Scholar
- 4.Brauer, J., Simon, A.: Inferring Definite Counterexamples through Under-Approximation. In: Goodloe, A.E., Person, S. (eds.) NFM 2012. LNCS, vol. 7226, pp. 54–69. Springer, Heidelberg (2012)CrossRefGoogle Scholar
- 5.Benedetti, M., Mangassarian, H.: QBF-based formal verification: Experience and perspectives. JSAT 5, 133–191 (2008)MathSciNetGoogle Scholar
- 6.Valiant, L.G.: A theory of the learnable. Commun. ACM 27, 1134–1142 (1984)CrossRefzbMATHGoogle Scholar
- 7.Giunchiglia, E., Marin, P., Narizzano, M.: QuBE7.0, System Description. JSAT 7, 83–88 (2010)Google Scholar
- 8.Angluin, D.: Queries and concept learning. Machine Learning 2, 319–342 (1987)Google Scholar
- 9.Hellerstein, L., Raghavan, V.: Exact learning of DNF formulas using DNF hypotheses. J. Comput. Syst. Sci. 70, 435–470 (2005)CrossRefMathSciNetzbMATHGoogle Scholar
- 10.Tseitin, G.S.: On the complexity of derivation in propositional calculus. Studies in Constructive Mathematics and Mathematical Logic, Part 2, 115–125 (1970)Google Scholar
- 11.Bshouty, N.H.: Exact learning Boolean function via the monotone theory. Inf. Comput. 123, 146–153 (1995)CrossRefMathSciNetzbMATHGoogle Scholar
- 12.Sloan, R.H., Szörényi, B., Turán, G.: Learning Boolean functions with queries. In: Crama, Y., Hammer, P.L. (eds.) Boolean Models and Methods in Mathematics, Computer Science, and Engineering. Cambridge University Press (2010)Google Scholar
- 13.Gent, I., Giunchiglia, E., Narizzano, M., Rowley, A., Tacchella, A.: Watched Data Structures for QBF Solvers. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 25–36. Springer, Heidelberg (2004)CrossRefGoogle Scholar
- 14.Gent, I.P., Rowley, A.G.D.: Solution Learning and Solution Directed Backjumping Revisited. In: Technical Report APES-80-2004, APES Research Group (2004)Google Scholar
- 15.Giunchiglia, E., Narizzano, M., Tacchella, A.: Clause/term resolution and learning in the evaluation of quantified Boolean formulas. Journal of Artificial Intelligence Research (JAIR) 26, 371–416 (2006)MathSciNetzbMATHGoogle Scholar
- 16.Marin, P., Giunchiglia, E., Narizzano, M.: Conflict and solution driven constraint learning in QBF. In: Doctoral Program of Constraint Programming Conference 2010, CP 2010 (2010)Google Scholar
- 17.Giunchiglia, E., Marin, P., Narizzano, M.: sQueezeBF: An Effective Preprocessor for QBFs Based on Equivalence Reasoning. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 85–98. Springer, Heidelberg (2010)CrossRefGoogle Scholar
- 18.Kupferschmid, S., Lewis, M., Schubert, T., Becker, B.: Incremental preprocessing methods for use in BMC. In: Int’l Workshop on Hardware Verification (2010)Google Scholar
- 19.Kleine-Büning, H., Karpinski, M., Flögel, A.: Resolution for quantified Boolean formulas. Information and Computation 117, 12–18 (1995)CrossRefMathSciNetzbMATHGoogle Scholar
- 20.Ehlers, R.: Unbeast: Symbolic Bounded Synthesis. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 272–275. Springer, Heidelberg (2011)CrossRefGoogle Scholar
- 21.Filiot, E., Jin, N., Raskin, J.-F.: An Antichain Algorithm for LTL Realizability. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 263–277. Springer, Heidelberg (2009)CrossRefGoogle Scholar
- 22.Alur, R., Madhusudan, P., Nam, W.: Symbolic computational techniques for solving games. STTT 7, 118–128 (2005)CrossRefGoogle Scholar
- 23.Biere, A., Heljanko, K., Wieringa, S., Sörensson, N.: 4th hardware model checking competition (HWCC 2011) (Affiliated with FMCAD 2011), http://fmv.jku.at/hwmcc11/
- 24.Biere, A.: Resolve and Expand. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 59–70. Springer, Heidelberg (2005)CrossRefGoogle Scholar