Variable Probabilistic Abstraction Refinement

  • Luis María Ferrer Fioriti
  • Ernst Moritz Hahn
  • Holger Hermanns
  • Björn Wachter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7561)


Predicate abstraction has proven powerful in the analysis of very large probabilistic systems, but has thus far been limited to the analysis of systems with a fixed number of distinct transition probabilities. This excludes a large variety of potential analysis cases, ranging from sensor networks to biochemical systems. In these systems, transition probabilities are often given as a function of state variables—leading to an arbitrary number of different probabilities.

This paper overcomes this shortcoming. It extends existing abstraction techniques to handle such variable probabilities. We first identify the most precise abstraction in this setting, the best transformer. For practicality purposes, we then devise another type of abstraction, mapping on extensions of constraint or interval Markov chains, which is less precise but better applicable in practice. Refinement techniques are employed in case a given abstraction yields too imprecise results. We demonstrate the practical applicability of our method on two case studies.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    de Alfaro, L., Roy, P.: Magnifying-Lens Abstraction for Markov Decision Processes. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 325–338. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Ballarini, P., Fisher, M., Wooldridge, M.: Automated game analysis via probabilistic model checking: a case study. ENTCS 149(2), 125–137 (2006)Google Scholar
  3. 3.
    D’Argenio, P.R., Jeannet, B., Jensen, H.E., Larsen, K.G.: Reachability Analysis of Probabilistic Systems by Successive Refinements. In: de Luca, L., Gilmore, S. (eds.) PAPM-PROBMIV 2001. LNCS, vol. 2165, pp. 39–56. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Fecher, H., Leucker, M., Wolf, V.: Don’t Know in Probabilistic Systems. In: Valmari, A. (ed.) SPIN 2006. LNCS, vol. 3925, pp. 71–88. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Ferrer Fioriti, L.M., Hahn, E.M., Hermanns, H., Wachter, B.: Variable probabilistic abstraction refinement. Tech. Rep. 87, SFB/TR 14 AVACS (2012)Google Scholar
  6. 6.
    Filar, J., Vrieze, K.: Competitive Markov Decision Processes. Springer (1996)Google Scholar
  7. 7.
    Hahn, E.M., Hermanns, H., Wachter, B., Zhang, L.: PASS: Abstraction Refinement for Infinite Probabilistic Models. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 353–357. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Hermanns, H., Wachter, B., Zhang, L.: Probabilistic CEGAR. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 162–175. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Jonsson, B., Larsen, K.G.: Specification and refinement of probabilistic processes. In: LICS, pp. 266–277. IEEE Computer Society (1991)Google Scholar
  10. 10.
    Katoen, J.P., Klink, D., Leucker, M., Wolf, V.: Three-valued abstraction for probabilistic systems. Journal on Logic and Algebraic Programming, 1–55 (2012)Google Scholar
  11. 11.
    Kattenbelt, M., Kwiatkowska, M.Z., Norman, G., Parker, D.: Abstraction Refinement for Probabilistic Software. In: Jones, N.D., Müller-Olm, M. (eds.) VMCAI 2009. LNCS, vol. 5403, pp. 182–197. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Kattenbelt, M., Kwiatkowska, M.Z., Norman, G., Parker, D.: A game-based abstraction-refinement framework for Markov decision processes. Formal Methods in System Design 36(3), 246–280 (2010)CrossRefMATHGoogle Scholar
  13. 13.
    Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of Probabilistic Real-Time Systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Kwiatkowska, M., Norman, G., Parker, D.: Game-based abstraction for Markov decision processes. In: QEST, pp. 157–166 (2006)Google Scholar
  15. 15.
    Kwiatkowska, M.Z., Norman, G., Parker, D.: A Framework for Verification of Software with Time and Probabilities. In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp. 25–45. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Lazimy, R.: Mixed-integer quadratic programming. Mathematical Programming 22, 332–349 (1982)CrossRefMathSciNetMATHGoogle Scholar
  17. 17.
    Norman, G., Parker, D., Kwiatkowska, M.Z., Shukla, S.K.: Evaluating the reliability of NAND multiplexing with PRISM. TCAD 24(10), 1629–1637 (2005)Google Scholar
  18. 18.
    Wachter, B.: Refined Probabilistic Abstraction. Ph.D. thesis, Saarland Univ. (2010)Google Scholar
  19. 19.
    Wachter, B., Zhang, L.: Best Probabilistic Transformers. In: Barthe, G., Hermenegildo, M. (eds.) VMCAI 2010. LNCS, vol. 5944, pp. 362–379. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Luis María Ferrer Fioriti
    • 1
  • Ernst Moritz Hahn
    • 1
  • Holger Hermanns
    • 1
  • Björn Wachter
    • 2
  1. 1.Saarland UniversityGermany
  2. 2.University of OxfordUK

Personalised recommendations