Improved Multi-Core Nested Depth-First Search

  • Sami Evangelista
  • Alfons Laarman
  • Laure Petrucci
  • Jaco van de Pol
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7561)

Abstract

This paper presents Cndfs, a tight integration of two earlier multi-core nested depth-first search (Ndfs) algorithms for LTL model checking. Cndfs combines the different strengths and avoids some weaknesses of its predecessors. We compare Cndfs to an earlier ad-hoc combination of those two algorithms and show several benefits: It has shorter and simpler code and a simpler correctness proof. It exhibits more robust performance with similar scalability, while at the same time reducing memory requirements.

The algorithm has been implemented in the multi-core backend of the LTSmin model checker, which is now benchmarked for the first time on a 48 core machine (previously 16). The experiments demonstrate better scalability than other parallel LTL model checking algorithms, but we also investigate apparent bottlenecks. Finally, we noticed that the multi-core Ndfs algorithms produce shorter counterexamples, surprisingly often shorter than their BFS-based counterparts.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barnat, J., Bauch, P., Brim, L., Češka, M.: Designing Fast LTL Model Checking Algorithms for Many-Core GPUs. Journal of Parallel and Distributed Computing (2011)Google Scholar
  2. 2.
    Barnat, J., Brim, L., Chaloupka, J.: Parallel Breadth-First Search LTL Model-Checking. In: ASE 2003, pp. 106–115. IEEE Computer Society (2003)Google Scholar
  3. 3.
    Barnat, J., Brim, L., Ročkai, P.: A Time-Optimal On-the-Fly Parallel Algorithm for Model Checking of Weak LTL Properties. In: Breitman, K., Cavalcanti, A. (eds.) ICFEM 2009. LNCS, vol. 5885, pp. 407–425. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Barnat, J., Brim, L., Ročkai, P.: Scalable shared memory LTL model checking. STTT 12(2), 139–153 (2010)CrossRefGoogle Scholar
  5. 5.
    Barnat, J., Brim, L., Češka, M., Ročkai, P.: DiVinE: Parallel Distributed Model Checker (Tool paper). In: PDMC 2010, pp. 4–7. IEEE (2010)Google Scholar
  6. 6.
    Brim, L., Černá, I., Moravec, P., Šimša, J.: Accepting Predecessors Are Better than Back Edges in Distributed LTL Model-Checking. In: Hu, A.J., Martin, A.K. (eds.) FMCAD 2004. LNCS, vol. 3312, pp. 352–366. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Černá, I., Pelánek, R.: Distributed Explicit Fair Cycle Detection (Set Based Approach). In: Ball, T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 49–73. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Courcoubetis, C., Vardi, M.Y., Wolper, P., Yannakakis, M.: Memory Efficient Algorithms for the Verification of Temporal Properties. In: Clarke, E., Kurshan, R.P. (eds.) CAV 1990. LNCS, vol. 531, pp. 233–242. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  9. 9.
    Couvreur, J.-M.: On-the-Fly Verification of Linear Temporal Logic. In: Wing, J.M., Woodcock, J. (eds.) FM 1999. LNCS, vol. 1708, pp. 253–271. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  10. 10.
    Evangelista, S., Petrucci, L., Youcef, S.: Parallel Nested Depth-First Searches for LTL Model Checking. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 381–396. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Geldenhuys, J., Valmari, A.: Tarjan’s Algorithm Makes On-the-Fly LTL Verification More Efficient. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 205–219. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Groce, A., Holzmann, G.J., Joshi, R.: Swarm Verification Techniques. Transactions on Software Engineering 37(6), 845–857 (2011)CrossRefGoogle Scholar
  13. 13.
    Laarman, A.W., Langerak, R., van de Pol, J.C., Weber, M., Wijs, A.: Multi-Core Nested Depth-First Search. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 321–335. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Laarman, A.W., van de Pol, J.C.: Variations on multi-core nested depth-first search. In: Barnat, J., Heljanko, K. (eds.) PDMC. EPTCS, vol. 72, pp. 13–28 (2011)Google Scholar
  15. 15.
    Laarman, A.W., van de Pol, J.C., Weber, M.: Boosting multi-core reachability performance with shared hash tables. In: Sharygina, N., Bloem, R. (eds.) FMCAD 2010, Lugano, Switzerland, USA. IEEE Computer Society (October 2010)Google Scholar
  16. 16.
    Laarman, A., van de Pol, J., Weber, M.: Multi-core lTSmin: Marrying modularity and scalability. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 506–511. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Laarman, A., van de Pol, J., Weber, M.: Parallel Recursive State Compression for Free. In: Groce, A., Musuvathi, M. (eds.) SPIN 2011. LNCS, vol. 6823, pp. 38–56. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  18. 18.
    Pelánek, R.: BEEM: Benchmarks for Explicit Model Checkers. In: Bošnački, D., Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 263–267. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  19. 19.
    Rao, V.N., Kumar, V.: Superlinear Speedup in Parallel State-space Search. In: Kumar, S., Nori, K.V. (eds.) FSTTCS 1988. LNCS, vol. 338, pp. 161–174. Springer, Heidelberg (1988)CrossRefGoogle Scholar
  20. 20.
    Reif, J.H.: Depth-first Search is Inherently Sequential. Information Processing Letters 20(5), 229–234 (1985)CrossRefMathSciNetMATHGoogle Scholar
  21. 21.
    Schwoon, S., Esparza, J.: A Note on On-the-Fly Verification Algorithms. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 174–190. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  22. 22.
    Vardi, M.Y., Wolper, P.: An Automata-Theoretic Approach to Automatic Program Verification. In: LICS 1986, pp. 332–344. IEEE Computer Society (1986)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Sami Evangelista
    • 1
  • Alfons Laarman
    • 2
  • Laure Petrucci
    • 1
  • Jaco van de Pol
    • 2
  1. 1.LIPN, CNRS UMR 7030Université Paris 13France
  2. 2.Formal Methods and ToolsUniversity of TwenteThe Netherlands

Personalised recommendations