Solutions for the Storage Problem of McEliece Public and Private Keys on Memory-Constrained Platforms

  • Falko Strenzke
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7483)

Abstract

While it is generally believed that due to their large public and private key sizes code based public key schemes like the McEliece PKC cannot be conveniently implemented on memory-constrained devices, we demonstrate otherwise. We show that for the public key we face rather a transmission problem than a storage problem: we propose an approach for Public Key Infrastructure (PKI) scenarios which totally eliminates the need to store public keys of communication partners. Instead, all the necessary computation steps are performed during the transmission of the key. We show the feasibility of the approach through an example implementation and give arguments that it will be possible for a smart card controller to carry out the associated computations fast enough to sustain the transmission rates of possible future high speed contactless interfaces. Concerning the McEliece private key, we demonstrate, contrasting to previously published implementations, that the parity check matrix, which is by far the largest part of this key, is not necessary to achieve fast decryption on embedded systems.

Keywords

post-quantum cryptography code-based cryptography public key encryption scheme efficient implementation embedded devices 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    McEliece, R.J.: A public key cryptosystem based on algebraic coding theory. DSN Progress Report 42-44, 114–116 (1978)Google Scholar
  2. 2.
    Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. Problems Control Inform. Theory 15(2), 159–166 (1986)MathSciNetMATHGoogle Scholar
  3. 3.
    Courtois, N.T., Finiasz, M., Sendrier, N.: How to Achieve a McEliece-Based Digital Signature Scheme. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 157–174. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Kabatianskii, G., Krouk, E., Smeets, B.: A Digital Signature Scheme Based on Random Error-Correcting Codes. In: Darnell, M. (ed.) Cryptography and Coding 1997. LNCS, vol. 1355, pp. 161–167. Springer, Heidelberg (1997)Google Scholar
  5. 5.
    Stern, J.: A New Identification Scheme Based on Syndrome Decoding. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 13–21. Springer, Heidelberg (1994)Google Scholar
  6. 6.
    Bernstein, D.J., Buchmann, J., Dahmen, E.: Post Quantum Cryptography. Springer Publishing Company, Incorporated (2008)Google Scholar
  7. 7.
    Biswas, B., Sendrier, N.: McEliece Cryptosystem Implementation: Theory and Practice. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 47–62. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Berger, T.P., Cayrel, P.-L., Gaborit, P., Otmani, A.: Reducing Key Length of the McEliece Cryptosystem. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 77–97. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Berger, T.P., Loidreau, P.: How to Mask the Structure of Codes for a Cryptographic Use. Designs, Codes and Cryptography 35, 63–79 (2005), doi:10.1007/s10623-003-6151-2MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Misoczki, R., Barreto, P.S.L.M.: Compact McEliece Keys from Goppa Codes. In: Jacobson Jr., M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 376–392. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Otmani, A., Tillich, J.P., Dallot, L.: Cryptanalysis of Two McEliece Cryptosystems Based on Quasi-Cyclic Codes. Mathematics in Computer Science 3, 129–140 (2010)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Faugère, J.-C., Otmani, A., Perret, L., Tillich, J.-P.: Algebraic Cryptanalysis of McEliece Variants with Compact Keys. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 279–298. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Umana, V.G., Leander, G.: Practical key recovery attacks on two McEliece variants. In: Cid, C., Faugere, J.-C. (eds.) SCC 2010, pp. 27–44 (2010)Google Scholar
  14. 14.
    Goppa, V.D.: A new class of linear correcting codes. Problems of Information Transmission 6, 207–212 (1970)MathSciNetGoogle Scholar
  15. 15.
    Faugère, J.C., Otmani, A., Perret, L., Tillich, J.P.: A distinguisher for high rate McEliece cryptosystems. In: 2011 IEEE Information Theory Workshop (ITW), pp. 282–286. IEEE (2011)Google Scholar
  16. 16.
  17. 17.
  18. 18.
    Eisenbarth, T., Güneysu, T., Heyse, S., Paar, C.: MicroEliece: McEliece for Embedded Devices. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 49–64. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  19. 19.
    Strenzke, F.: A Smart Card Implementation of the McEliece PKC. In: Samarati, P., Tunstall, M., Posegga, J., Markantonakis, K., Sauveron, D. (eds.) WISTP 2010. LNCS, vol. 6033, pp. 47–59. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  20. 20.
    Heyse, S.: Low-Reiter: Niederreiter Encryption Scheme for Embedded Microcontrollers. In: Sendrier, N. (ed.) PQCrypto 2010. LNCS, vol. 6061, pp. 165–181. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  21. 21.
    Biswas, B., Sendrier, N.: HyMES - an open source implementation of the McEliece cryptosystem (2008), http://www-rocq.inria.fr/secret/CBCrypto/index.php?pg=hymes
  22. 22.
    Shoufan, A., Wink, T., Molter, G., Huss, S., Strenzke, F.: A Novel Processor Architecture for McEliece Cryptosystem and FPGA Platforms. In: ASAP 2009, pp. 98–105. IEEE Computer Society, Washington, DC (2009)Google Scholar
  23. 23.
    German Federal Bureau of Information Security (BSI): Technical Guideline TR-03110: Advanced Security Mechanisms for Machine Readable Travel Documents, Version 2.02 (2009)Google Scholar
  24. 24.
    German Federal Bureau of Information Security (BSI): Technical Guideline TR-03111: Elliptic Curve Cryptography, Version 1.11 (2009)Google Scholar
  25. 25.
    MacWilliams, F.J., Sloane, N.J.A.: The theory of error correcting codes. North Holland (1997)Google Scholar
  26. 26.
    Kobara, K., Imai, H.: Semantically Secure McEliece Public-Key Cryptosystems - Conversions for McEliece PKC. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992, pp. 19–35. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  27. 27.
    Bernstein, D.J., Lange, T., Peters, C.: Attacking and Defending the McEliece Cryptosystem. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 31–46. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  28. 28.
    Cooper, et al.: RFC 5280, http://tools.ietf.org/html/rfc5280
  29. 29.
    Coronado, L.C., Buchmann, J., Carlos, L., Garcia, C., Dahmen, E., Klintsevich, E., Darmstadt, T.U.: CMSS – An Improved Merkle Signature Scheme Johannes Buchmann (2006), http://www.cdc.informatik.tu-darmstadt.de/~dahmen/papers/BCDDK06.pdf
  30. 30.
    Witschnig, H., Patauner, C., Maier, A., Leitgeb, E., Rinner, D.: High speed RFID lab-scaled prototype at the frequency of 13.56 MHz. E & I Elektrotechnik und Informationstechnik 124, 376–383 (2007), doi:10.1007/s00502-007-0485-9CrossRefGoogle Scholar
  31. 31.
  32. 32.
  33. 33.
    Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)Google Scholar
  34. 34.
    Overbeck, R., Sendrier, N.: Code-based cryptography. In: Bernstein, D., Buchmann, J., Dahmen, E. (eds.) Post-Quantum Cryptography, pp. 95–145. Springer (2009)Google Scholar
  35. 35.
    Finiasz, M.: Parallel-CFS: Strengthening the CFS McEliece-Based Signature Scheme. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 159–170. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  36. 36.
    Otmani, A., Tillich, J.-P.: An Efficient Attack on All Concrete KKS Proposals. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp. 98–116. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  37. 37.
    Bernstein, D.J.: List Decoding for Binary Goppa Codes. In: Chee, Y.M., Guo, Z., Ling, S., Shao, F., Tang, Y., Wang, H., Xing, C. (eds.) IWCC 2011. LNCS, vol. 6639, pp. 62–80. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Falko Strenzke
    • 1
  1. 1.FlexSecure GmbHGermany

Personalised recommendations