Advertisement

Secure Hierarchical Identity-Based Identification without Random Oracles

  • Atsushi Fujioka
  • Taiichi Saito
  • Keita Xagawa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7483)

Abstract

This paper proposes a generic construction of hierarchical identity-based identification (HIBI) protocols secure against impersonation under active and concurrent attacks in the standard model. The proposed construction converts a digital signature scheme existentially unforgeable against chosen message attacks, where the scheme has a protocol for showing possession of signing key. Our construction is based on the so-called certificate-based construction of hierarchical identity-based cryptosystems, and utilizes a variant of the well-known OR-proof technique to ensure the security against impersonation under active and concurrent attacks.

We also present several concrete examples of our construction employing the Waters signature (EUROCRYPT 2005), and other signatures. As results, its concurrent security of each instantiation is proved under the computational Diffie-Hellman (CDH) assumption, the RSA assumption, or their variants in the standard model.

Chin, Heng, and Goi proposed an HIBI protocol passively and concurrently secure under the CDH and one-more CDH assumption, respectively (FGIT-SecTech 2009). However, its security is proved in the random oracle model.

Keywords

hierarchical identity-based identification impersonation under active and concurrent attacks computational Diffie-Hellman assumption RSA assumption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bellare, M., Namprempre, C., Neven, G.: Security proofs for identity-based identification and signature schemes. Journal of Cryptology 22(1), 1–61 (2009)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Bellare, M., Palacio, A.: GQ and Schnorr Identification Schemes: Proofs of Security against Impersonation under Active and Concurrent Attacks. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 162–177. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Bellare, M., Rogaway, P.: Random oracle are practical: A paradigm for designing efficient protocols. In: CCS 1993, pp. 62–73. ACM (1993)Google Scholar
  4. 4.
    Boneh, D., Boyen, X.: Efficient Selective-ID Secure Identity-Based Encryption Without Random Oracles. In: Cachin, C., Camenisch, J. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. SIAM Journal on Computing 32(3), 584–615 (2003); A preliminary version appeared In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–615. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Chin, J.-J., Heng, S.-H., Goi, B.-M.: Hierarchical Identity-Based Identification Schemes. In: Ślęzak, D., Kim, T.-H., Fang, W.-C., Arnett, K.P. (eds.) SecTech 2009. CCIS, vol. 58, pp. 93–99. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Cramer, R.: Modular Design of Secure, yet Practical Cryptographic Protocols. PhD thesis, University of Amsterdam (1996)Google Scholar
  8. 8.
    Cramer, R., Shoup, V.: Signature schemes based on the strong RSA assumption. ACM Transactions on Information and System Security 3(3), 161–185 (2000); A preliminary version appeared in 6th ACM CCS (1999)CrossRefGoogle Scholar
  9. 9.
    Fujioka, A., Saito, T., Xagawa, K.: Security Enhancements by OR-Proof in Identity-Based Identification. In: Bao, F., Samarati, P., Zhou, J. (eds.) ACNS 2012. LNCS, vol. 7341, pp. 135–152. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Gentry, C., Silverberg, A.: Hierarchical ID-Based Cryptography. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Hess, F.: Exponent group signature schemes and efficient identity based signature schemes based on pairings. Cryptology ePrint Archive, Report 2002/012 (2002), http://eprint.iacr.org/2002/012
  12. 12.
    Hohenberger, S., Waters, B.: Short and Stateless Signatures from the RSA Assumption. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 654–670. Springer, Heidelberg (2009), The full version is available at http://eprint.iacr.org/2009/283 CrossRefGoogle Scholar
  13. 13.
    Horwitz, J., Lynn, B.: Toward Hierarchical Identity-Based Encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 466–481. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Kurosawa, K., Heng, S.-H.: From Digital Signature to ID-based Identification/Signature. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 248–261. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. 15.
    Lewko, A., Waters, B.: New Techniques for Dual System Encryption and Fully Secure HIBE with Short Ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 455–479. Springer, Heidelberg (2010), The full version is available at http://eprint.iacr.org/2009/482 CrossRefGoogle Scholar
  16. 16.
    Miller, G.L.: Riemann’s hypothesis and tests for primality. Journal of Computer and System Sciences 13(3), 300–317 (1976)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Poupard, G., Stern, J.: Short Proofs of Knowledge for Factoring. In: Imai, H., Zheng, Y. (eds.) PKC 2000. LNCS, vol. 1751, pp. 147–166. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  18. 18.
    Shamir, A.: Identity-Based Cryptosystems and Signature Schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  19. 19.
    Waters, B.: Efficient Identity-Based Encryption Without Random Oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005), The full version is available at http://eprint.iacr.org/2004/180 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Atsushi Fujioka
    • 1
  • Taiichi Saito
    • 2
  • Keita Xagawa
    • 1
  1. 1.NTT Secure Platform LaboratoriesMusashino-shiJapan
  2. 2.Tokyo Denki UniversityAdachi-kuJapan

Personalised recommendations