Advertisement

Learning Fine-Grained Structured Input for Memory Corruption Detection

  • Lei Zhao
  • Debin Gao
  • Lina Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7483)

Abstract

Inputs to many application and server programs contain rich and consistent structural information. The propagation of such input in program execution could serve as accurate and reliable signatures for detecting memory corruptions. In this paper, we propose a novel approach to detect memory corruptions at the binary level. The basic insight is that different parts of an input are usually processed in different ways, e.g., by different instructions. Identifying individual parts in an input and learning the pattern in which they are processed is an attractive approach to detect memory corruptions. We propose a fine-grained dynamic taint analysis system to detect different fields in an input and monitor the propagation of these fields, and show that deviations from the execution pattern learned signal a memory corruption. We implement a prototype of our system and demonstrate its success in detecting a number of memory corruption attacks in the wild. In addition, we evaluate the overhead of our system and discuss its advantages over existing approaches and limitations.

Keywords

memory corruption dynamic taint analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    Abadi, M., Budiu, M., Erlingsson, U., Ligatti, J.: Control-flow integrity principles, implementations, and applications. ACM Transactions on Information and System Security 13(1), 1–40 (2009)CrossRefGoogle Scholar
  3. 3.
    Akritidis, P., Cadar, C., Raiciu, C., Costa, M., Castro, M.: Preventing Memory Error Exploits with WIT. In: 2008 IEEE Symposium on Security and Privacy, pp. 263–277 (2008)Google Scholar
  4. 4.
    Bhatkar, S., DuVarney, D.: Address obfuscation: An efficient approach to combat a broad range of memory error exploits. In: Proceedings of USENIX Security (2003)Google Scholar
  5. 5.
    Bosman, E., Slowinska, A., Bos, H.: Minemu: The World’s Fastest Taint Tracker. In: Sommer, R., Balzarotti, D., Maier, G. (eds.) RAID 2011. LNCS, vol. 6961, pp. 1–20. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Caballero, J., Yin, H., Liang, Z., Song, D.: Polyglot: Automatic extraction of protocol message format using dynamic binary analysis. In: Proceedings of CCS, pp. 317–329 (2007)Google Scholar
  7. 7.
    Castro, M., Costa, M., Harris, T.: Securing software by enforcing data-flow integrity. In: Proceedings of OSDI, pp. 147–160 (2006)Google Scholar
  8. 8.
    Chen, S., Xu, J., Sezer, E.C., Gauriar, P., Iyer, R.K.: Non-control-hijacking attacks are realistic threats. In: Proceedings of USENIX Security (2005)Google Scholar
  9. 9.
    Clause, J., Doudalis, I., Orso, A., Prvulovic, M.: Effective memory protection using dynamic tainting. In: Proceedings of ASE, pp. 284–292 (2007)Google Scholar
  10. 10.
    Cowan, C., Pu, C., Maier, D., Hintony, H., Walpole, J., Bakke, P., Beattie, S., Grier, A., Wagle, P., Zhang, Q.: StackGuard: Automatic adaptive detection and prevention of buffer-overflow attacks. In: Proceedings of USENIX Security (1998)Google Scholar
  11. 11.
    Cui, W., Peinado, M., Chen, K., Wang, H., Irun-Briz, L.: Tupni: Automatic reverse engineering of input formats. In: Proceedings of CCS, pp. 391–402 (2008)Google Scholar
  12. 12.
    Doudalis, I., Clause, J., Venkataramani, G., Prvulovic, M., Orso, A.: Effective and Efficient Memory Protection Using Dynamic Tainting. IEEE Transactions on Computers 61(1), 87–100 (2012)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Godefroid, P., Kiezun, A., Levin, M.Y.: Grammar-based whitebox fuzzing. In: Proceedings of PLDI, vol. 43, pp. 206–215 (2008)Google Scholar
  14. 14.
    Jim, T., Morrisett, G., Grossman, D., Hicks, M., Cheney, J., Wang, Y.: Cyclone: A safe dialect of C. In: Proceedings of USENIX ATC, pp. 275–288 (2002)Google Scholar
  15. 15.
    Lin, Z., Jiang, X., Xu, D., Zhang, X.: Automatic protocol format reverse engineering through context-aware monitored execution. In: Proceedings of NDSS (2008)Google Scholar
  16. 16.
    Lin, Z., Zhang, X.: Reverse Engineering Input Syntactic Structure from Program Execution and Its Applications. IEEE Transactions on Software Engineering 36(5), 688–703 (2010)CrossRefGoogle Scholar
  17. 17.
    Livshits, V.B., Lam, M.S.: Tracking pointers with path and context sensitivity for bug detection in C programs. In: Proceedings of FSE, vol. 28, pp. 317–326 (2003)Google Scholar
  18. 18.
    Nakka, N., Kalbarczyk, Z., Iyer, R.: Defeating Memory Corruption Attacks via Pointer Taintedness Detection. In: Proceedings of DSN, pp. 378–387 (2005)Google Scholar
  19. 19.
    National Institute of Standards and Technology: National vulnerability database statistics, http://web.nvd.nist.gov/view/vuln/statistics
  20. 20.
    Necula, G.C., McPeak, S., Weimer, W.: CCured: type-safe retrofitting of legacy code. In: Proceedings of POPL, pp. 128–139 (2002)Google Scholar
  21. 21.
    Newsome, J., Song, D.: Dynamic taint analysis for automatic detection, analysis, and signature generation of exploits on commodity software. In: Proceedings of NDSS (2005)Google Scholar
  22. 22.
    Qin, F., Wang, C., Li, Z., Kim, H.S., Zhou, Y., Wu, Y.: LIFT: A Low-Overhead Practical Information Flow Tracking System for Detecting Security Attacks. In: Proceedings of Micro, pp. 135–148 (2006)Google Scholar
  23. 23.
    Slowinska, A., Bos, H.: Pointless tainting? Evaluating the practicality of pointer tainting. In: Proceedings of EuroSys, pp. 61–74 (2009)Google Scholar
  24. 24.
    Song, D., Brumley, D., Yin, H., Caballero, J., Jager, I., Kang, M.G., Liang, Z., Newsome, J., Poosankam, P., Saxena, P.: BitBlaze: A New Approach to Computer Security via Binary Analysis. In: Sekar, R., Pujari, A.K. (eds.) ICISS 2008. LNCS, vol. 5352, pp. 1–25. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  25. 25.
    Tsai, T., Singh, N.: Libsafe: transparent system-wide protection against buffer overflow attacks. In: Proceedings of DSN, pp. 541–550 (2002)Google Scholar
  26. 26.
    Younan, Y., Philippaerts, P., Cavallaro, L., Sekar, R., Piessens, F., Joosen, W.: PAriCheck: an efficient pointer arithmetic checker for C programs. In: Proceedings of AsiaCCS, pp. 145–156 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Lei Zhao
    • 1
    • 2
  • Debin Gao
    • 2
  • Lina Wang
    • 1
  1. 1.Computer School of Wuhan UniversityWuhanChina
  2. 2.School of Information SystemsSingapore Management UniversitySingapore

Personalised recommendations