Multi-core Reachability for Timed Automata

  • Andreas E. Dalsgaard
  • Alfons Laarman
  • Kim G. Larsen
  • Mads Chr. Olesen
  • Jaco van de Pol
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7595)

Abstract

Model checking of timed automata is a widely used technique. But in order to take advantage of modern hardware, the algorithms need to be parallelized. We present a multi-core reachability algorithm for the more general class of well-structured transition systems, and an implementation for timed automata.

Our implementation extends the opaal tool to generate a timed automaton successor generator in c++, that is efficient enough to compete with the uppaal model checker, and can be used by the discrete model checker LTSmin, whose parallel reachability algorithms are now extended to handle subsumption of semi-symbolic states. The reuse of efficient lockless data structures guarantees high scalability and efficient memory use.

With experiments we show that opaal+LTSmin can outperform the current state-of-the-art, uppaal. The added parallelism is shown to reduce verification times from minutes to mere seconds with speedups of up to 40 on a 48-core machine. Finally, strict BFS and (surprisingly) parallel DFS search order are shown to reduce the state count, and improve speedups.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.-K.: General Decidability Theorems for Infinite-State Systems. In: Proceedings of Eleventh Annual IEEE Symposium on Logic in Computer Science, LICS 1996, pp. 313–321 (July 1996)Google Scholar
  2. 2.
    Agarwal, V., Petrini, F., Pasetto, D., Bader, D.A.: Scalable Graph Exploration on Multicore Processors. In: Proceedings of the 2010 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2011, pp. 1–11. IEEE Computer Society, Washington, DC (2010)Google Scholar
  3. 3.
    Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126(2), 183–235 (1994)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Amnell, T., Behrmann, G., Bengtsson, J.E., D’Argenio, P.R., David, A., Fehnker, A., Hune, T., Jeannet, B., Larsen, K.G., Möller, M.O., Pettersson, P., Weise, C., Yi, W.: UPPAAL - Now, Next, and Future. In: Cassez, F., Jard, C., Rozoy, B., Dermot, M. (eds.) MOVEP 2000. LNCS, vol. 2067, pp. 99–124. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Barnat, J., Ročkai, P.: Shared Hash Tables in Parallel Model Checking. Electronic Notes in Theoretical Computer Science 198(1), 79–91 (2007); Proceedings of PDMC 2007CrossRefGoogle Scholar
  6. 6.
    Behrmann, G.: Distributed Reachability Analysis in Timed Automata. International Journal on Software Tools for Technology Transfer 7(1), 19–30 (2005)CrossRefGoogle Scholar
  7. 7.
    Behrmann, G., Bengtsson, J.E., David, A., Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL Implementation Secrets. In: Damm, W., Olderog, E.-R. (eds.) FTRTFT 2002. LNCS, vol. 2469, pp. 3–22. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Behrmann, G., Bouyer, P., Fleury, E., Larsen, K.G.: Static Guard Analysis in Timed Automata Verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 254–270. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Behrmann, G., David, A., Larsen, K.G.: A Tutorial on Uppaal. In: Bernardo, M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Behrmann, G., David, A., Larsen, K.G., Pettersson, P., Yi, W.: Developing Uppaal over 15 years. Software: Practice and Experience 41(2), 133–142 (2011)CrossRefGoogle Scholar
  11. 11.
    Behrmann, G., Hune, T., Vaandrager, F.: Distributing Timed Model Checking - How the Search Order Matters. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  12. 12.
    Bengtsson, J.: Clocks, DBMs and states in timed systems. PhD thesis, Uppsala University (2002)Google Scholar
  13. 13.
    Blom, S., van de Pol, J., Weber, M.: LTSmin: Distributed and Symbolic Reachability. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 354–359. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Bouyer, P.: Forward analysis of updatable timed automata. Formal Methods in System Design 24(3), 281–320 (2004)MATHCrossRefGoogle Scholar
  15. 15.
    Braberman, V., Olivero, A., Schapachnik, F.: Dealing with practical limitations of distributed timed model checking for timed automata. Formal Methods in System Design 29, 197–214 (2006), doi:10.1007/s10703-006-0012-3MATHCrossRefGoogle Scholar
  16. 16.
    Comon, H., Jurski, Y.: Timed Automata and the Theory of Real Numbers. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 242–257. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  17. 17.
    Dalsgaard, A.E., Hansen, R.R., Jørgensen, K.Y., Larsen, K.G., Olesen, M.C., Olsen, P., Srba, J.: opaal: A Lattice Model Checker. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 487–493. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  18. 18.
    Evangelista, S., Laarman, A., Petrucci, L., van de Pol, J.: Improved Multi-Core Nested Depth-First Search. In: Mukund, M., Chakraborty, S. (eds.) ATVA 2012. LNCS, vol. 7561, pp. 269–283. Springer, Heidelberg (2012)Google Scholar
  19. 19.
    Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theoretical Computer Science 256(1-2), 63–92 (2001)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Laarman, A., Langerak, R., van de Pol, J., Weber, M., Wijs, A.: Multi-core Nested Depth-First Search. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 321–335. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  21. 21.
    Laarman, A.W., van de Pol, J.: Variations on Multi-Core Nested Depth-First Search. In: Barnat, J., Heljanko, K. (eds.) PDMC. EPTCS, vol. 72, pp. 13–28 (2011)Google Scholar
  22. 22.
    Laarman, A.W., van de Pol, J., Weber, M.: Boosting Multi-Core Reachability Performance with Shared Hash Tables. In: Sharygina, N., Bloem, R. (eds.) Proceedings of the 10th International Conference on Formal Methods in Computer-Aided Design, Lugano, Swiss. IEEE Computer Society (October 2010)Google Scholar
  23. 23.
    Laarman, A., van de Pol, J., Weber, M.: Multi-Core LTSmin: Marrying Modularity and Scalability. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 506–511. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  24. 24.
    Laarman, A., van de Pol, J., Weber, M.: Parallel Recursive State Compression for Free. In: Groce, A., Musuvathi, M. (eds.) SPIN Workshops 2011. LNCS, vol. 6823, pp. 38–56. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  25. 25.
    Sanders, P.: Lastverteilungsalgorithmen fur Parallele Tiefensuche. number 463. In: Fortschrittsberichte, Reihe 10. VDI. Verlag (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Andreas E. Dalsgaard
    • 2
  • Alfons Laarman
    • 1
  • Kim G. Larsen
    • 2
  • Mads Chr. Olesen
    • 2
  • Jaco van de Pol
    • 1
  1. 1.Formal Methods and ToolsUniversity of TwenteThe Netherlands
  2. 2.Department of Computer ScienceAalborg UniversityDenmark

Personalised recommendations