Abstract Argumentation via Monadic Second Order Logic

  • Wolfgang Dvořák
  • Stefan Szeider
  • Stefan Woltran
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7520)

Abstract

We propose the formalism of Monadic Second Order Logic (MSO) as a unifying framework for representing and reasoning with various semantics of abstract argumentation. We express a wide range of semantics within the proposed framework, including the standard semantics due to Dung, semi-stable, stage, cf2, and resolution-based semantics. We provide building blocks which make it easy and straight-forward to express further semantics and reasoning tasks. Our results show that MSO can serve as a lingua franca for abstract argumentation that directly yields to complexity results. In particular, we obtain that for argumentation frameworks with certain structural properties the main computational problems with respect to MSO-expressible semantics can all be solved in linear time. Furthermore, we provide a novel characterization of resolution-based grounded semantics.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amgoud, L., Devred, C.: Argumentation Frameworks as Constraint Satisfaction Problems. In: Benferhat, S., Grant, J. (eds.) SUM 2011. LNCS, vol. 6929, pp. 110–122. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs. J. Algorithms 12(2), 308–340 (1991)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Baroni, P., Dunne, P.E., Giacomin, M.: On the resolution-based family of abstract argumentation semantics and its grounded instance. Artif. Intell. 175(3-4), 791–813 (2011)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Baroni, P., Giacomin, M.: Semantics of abstract argument systems. In: Rahwan, I., Simari, G. (eds.) Argumentation in Artificial Intelligence, pp. 25–44. Springer (2009)Google Scholar
  5. 5.
    Baroni, P., Giacomin, M., Guida, G.: SCC-recursiveness: A general schema for argumentation semantics. Artif. Intell. 168(1-2), 162–210 (2005)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Bench-Capon, T.J.M., Dunne, P.E.: Argumentation in artificial intelligence. Artif. Intell. 171(10-15), 619–641 (2007)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Besnard, P., Doutre, S.: Checking the acceptability of a set of arguments. In: Delgrande, J.P., Schaub, T. (eds.) Proc. NMR, pp. 59–64 (2004)Google Scholar
  8. 8.
    Bistarelli, S., Campli, P., Santini, F.: Finding partitions of arguments with Dung’s properties via SCSPs. In: Chu, W.C., Wong, W.E., Palakal, M.J., Hung, C.C. (eds.) Proc. SAC, pp. 913–919. ACM (2011)Google Scholar
  9. 9.
    Bodlaender, H.L.: A tourist guide through treewidth. Acta Cybernetica 11, 1–21 (1993)MathSciNetMATHGoogle Scholar
  10. 10.
    Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Caminada, M., Gabbay, D.M.: A logical account of formal argumentation. Studia Logica 93(2), 109–145 (2009)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Courcelle, B., Engelfriet, J.: Graph structure and monadic second-order logic, a language theoretic approach, vol. 2012. Cambridge University Press (2011)Google Scholar
  13. 13.
    Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization problems on graphs of bounded clique-width. Theory Comput. Syst. 33(2), 125–150 (2000)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Courcelle, B., Makowsky, J.A., Rotics, U.: On the fixed parameter complexity of graph enumeration problems definable in monadic second-order logic. Discr. Appl. Math. 108(1-2), 23–52 (2001)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Courcelle, B.: Recognizability and second-order definability for sets of finite graphs. Tech. Rep. I-8634, Université de Bordeaux (1987)Google Scholar
  16. 16.
    Courcelle, B.: Graph rewriting: an algebraic and logic approach. In: Handbook of Theoretical Computer Science, vol. B, pp. 193–242. Elsevier, Amsterdam (1990)Google Scholar
  17. 17.
    Courcelle, B., Engelfriet, J., Rozenberg, G.: Context-free Handle-rewriting Hypergraph Grammars. In: Ehrig, H., Kreowski, H.-J., Rozenberg, G. (eds.) Graph Grammars 1990. LNCS, vol. 532, pp. 253–268. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  18. 18.
    Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2), 321–358 (1995)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Dunne, P.E.: Computational properties of argument systems satisfying graph-theoretic constraints. Artif. Intell. 171(10-15), 701–729 (2007)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Dvořák, W., Szeider, S., Woltran, S.: Reasoning in argumentation frameworks of bounded clique-width. In: Baroni, P., Cerutti, F., Giacomin, M., Simari, G.R. (eds.) Proc. COMMA. FAIA, vol. 216, pp. 219–230. IOS Press (2010)Google Scholar
  21. 21.
    Dvořák, W., Pichler, R., Woltran, S.: Towards fixed-parameter tractable algorithms for abstract argumentation. Artif. Intell. 186, 1–37 (2012)CrossRefGoogle Scholar
  22. 22.
    Dvořák, W., Woltran, S.: Complexity of semi-stable and stage semantics in argumentation frameworks. Inf. Process. Lett. 110(11), 425–430 (2010)MATHCrossRefGoogle Scholar
  23. 23.
    Egly, U., Gaggl, S.A., Woltran, S.: Answer-set programming encodings for argumentation frameworks. Argument and Computation 1(2), 147–177 (2010)CrossRefGoogle Scholar
  24. 24.
    Egly, U., Woltran, S.: Reasoning in argumentation frameworks using quantified boolean formulas. In: Dunne, P.E., Bench-Capon, T.J.M. (eds.) Proc. COMMA. FAIA, vol. 144, pp. 133–144. IOS Press (2006)Google Scholar
  25. 25.
    Gaggl, S.A., Woltran, S.: cf2 semantics revisited. In: Baroni, P., Cerutti, F., Giacomin, M., Simari, G.R. (eds.) Proc. COMMA. FAIA, vol. 216, pp. 243–254. IOS Press (2010)Google Scholar
  26. 26.
    Gottlob, G., Pichler, R., Wei, F.: Bounded treewidth as a key to tractability of knowledge representation and reasoning. Artif. Intell. 174(1), 105–132 (2010)MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Gottlob, G., Szeider, S.: Fixed-parameter algorithms for artificial intelligence, constraint satisfaction, and database problems. The Computer Journal 51(3), 303–325 (2006)CrossRefGoogle Scholar
  28. 28.
    Kneis, J., Langer, A., Rossmanith, P.: Courcelle’s theorem - a game-theoretic approach. Discrete Optimization 8(4), 568–594 (2011)MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Langer, A., Reidl, F., Rossmanith, P., Sikdar, S.: Evaluation of an MSO-solver. In: Proc. of ALENEX 2012, pp. 55–63. SIAM (2012)Google Scholar
  30. 30.
    Oum, S., Seymour, P.D.: Approximating clique-width and branch-width. J. Comb. Theory, Ser. B 96(4), 514–528 (2006)MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Tang, P., Lin, F.: Discovering theorems in game theory: Two-person games with unique pure nash equilibrium payoffs. Artif. Intell. 175(14-15), 2010–2020 (2011)MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Toni, F., Sergot, M.: Argumentation and Answer Set Programming. In: Balduccini, M., Son, T.C. (eds.) Gelfond Feschrift. LNCS (LNAI), vol. 6565, pp. 164–180. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  33. 33.
    Weydert, E.: Semi-stable extensions for infinite frameworks. In: Proc. BNAIC, pp. 336–343 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Wolfgang Dvořák
    • 1
  • Stefan Szeider
    • 2
  • Stefan Woltran
    • 2
  1. 1.Theory and Applications of Algorithms GroupUniversity of ViennaAustria
  2. 2.Institute of Information SystemsVienna University of TechnologyAustria

Personalised recommendations