Advertisement

Comparing and Fusing Terrain Network Information

  • Emmanuel Navarro
  • Bruno Gaume
  • Henri Prade
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7520)

Abstract

Terrain networks (or complex networks) is a type of relational information that is encountered in many fields. In order to properly answer questions pertaining to the comparison or to the merging of such networks, a method that takes into account the underlying structure of graphs is proposed. The effectiveness of the method is illustrated using real linguistic data networks and artificial networks, in particular.

Keywords

Random Graph Random Network Link Prediction Graph Topology Label Procedure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albert, R., Barabási, A.: Statistical mechanics of complex networks (2001)Google Scholar
  2. 2.
    Blondel, V.D., Gajardo, A., Heymans, M., Senellart, P., Dooren, P.V.: A measure of similarity between graph vertices: Applications to synonym extraction and web searching. SIAM Rev. 46, 647–666 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Bollobas, B.: Modern Graph Theory. Springer (October 2002)Google Scholar
  4. 4.
    Cohen, J.: A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 20(1), 37–46 (1960)CrossRefGoogle Scholar
  5. 5.
    Fellbaum, C. (ed.): WordNet: An Electronic Lexical Database. MIT Press (1998)Google Scholar
  6. 6.
    Gaillard, B., Gaume, B., Navarro, E.: Invariants and variability of synonymy networks: Self mediated agreement by confluence. In: TextGraphs-6, ACL, pp. 15–23 (2011)Google Scholar
  7. 7.
    Gaume, B.: Balades Aléatoires dans les Petits Mondes Lexicaux. I3: Information Interaction Intelligence 4(2) (2004)Google Scholar
  8. 8.
    He, H., Singh, A.K.: Closure-tree: An index structure for graph queries. In: Proc. of the 22th IEEE Int. Conf. on Data Engineering (ICDE), p. 38 (April 2006)Google Scholar
  9. 9.
    Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks. Journal of the American Society for Information Science and Technology 58(7), 1019–1031 (2007)CrossRefGoogle Scholar
  10. 10.
    Macindoe, O., Richards, W.: Graph comparison using fine structure analysis. In: Second IEEE Int. Conf. on Social Computing, pp. 193–200 (August 2010)Google Scholar
  11. 11.
    Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity flooding: a versatile graph matching algorithm and its application to schema matching. In: Proceedings of the 18th International Conference on Data Engineering 2002, pp. 117–128 (2002)Google Scholar
  12. 12.
    Milo, R., Itzkovitz, S., Kashtan, N., Levitt, R., Shen-Orr, S., Ayzenshtat, I., Sheffer, M., Alon, U.: Superfamilies of evolved and designed networks. Science 303(5663), 1538–1542 (2004)CrossRefGoogle Scholar
  13. 13.
    Pons, P., Latapy, M.: Computing communities in large networks using random walks (long version). Journal of Graph Algorithms and Applications (JGAA) 10(2), 191–218 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Sajous, F., Navarro, E., Gaume, B., Prévot, L., Chudy, Y.: Semi-automatic enrichment of crowdsourced synonymy networks: the wisigoth system applied to wiktionary. Language Resources and Evaluation, 1–34 (to appear)Google Scholar
  15. 15.
    Schaeffer, S.E.: Graph clustering. Computer Science Review 1(1), 27–64 (2007)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Shang, H., Zhu, K., Lin, X., Zhang, Y., Ichise, R.: Similarity search on supergraph containment. In: Proc. of the 26th IEEE Int. Conf. on Data Engineering (ICDE), pp. 637–648 (March 2010)Google Scholar
  17. 17.
    Stewart, G.W.: Perron-frobenius theory: a new proof of the basics. Technical report, College Park, MD, USA (1994)Google Scholar
  18. 18.
    Tian, Y., Patel, J.M.: Tale: A tool for approximate large graph matching. In: Proc. of the 24th IEEE Int. Conf. on Data Engineering (ICDE), pp. 963–972 (2008)Google Scholar
  19. 19.
    Watts, D., Strogatz, S.: Collective dynamics of ’small-world’ networks. Nature 393, 440–442 (1998)CrossRefGoogle Scholar
  20. 20.
    Yan, X., Yu, P.S., Han, J.: Substructure similarity search in graph databases. In: Proc. of the 2005 ACM Int. Conf. on Management of Data (SIGMOD), pp. 766–777 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Emmanuel Navarro
    • 1
  • Bruno Gaume
    • 2
  • Henri Prade
    • 2
  1. 1.IRITUniversité de Toulouse IIIToulouse Cedex 9France
  2. 2.CLLE-ERSSUniversité de Toulouse IIToulouse Cedex 9France

Personalised recommendations