Applications of Ordinal Ranks to Flexible Query Answering

  • Lucie Urbanova
  • Vilem Vychodil
  • Lena Wiese
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7520)

Abstract

Exact querying and retrieving relevant data from a database is a difficult task. We present an approach for flexibly answering algebraic queries using an extension of Codd’s relational model with ordinal ranks based on residuated lattices and similarities on attribute domains.

Keywords

Flexible query answering ranked data tables complete residuated lattices similarity relational algebra 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bělohlávek, R.: Fuzzy Relational Systems: Foundations and Principles. Kluwer Academic Publishers, Norwell (2002)MATHCrossRefGoogle Scholar
  2. 2.
    Bělohlávek, R., Vychodil, V.: Data Tables with Similarity Relations: Functional Dependencies, Complete Rules and Non-redundant Bases. In: Li Lee, M., Tan, K.-L., Wuwongse, V. (eds.) DASFAA 2006. LNCS, vol. 3882, pp. 644–658. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Bělohlávek, R., Vychodil, V.: Query systems in similarity-based databases: logical foundations, expressive power, and completeness. In: ACM Symposium on Applied Computing (SAC), pp. 1648–1655. ACM (2010)Google Scholar
  4. 4.
    Bosc, P., HadjAli, A., Pivert, O.: Incremental controlled relaxation of failing flexible queries. Journal of Intelligent Information Systems (JIIS) 33(3), 261–283 (2009)CrossRefGoogle Scholar
  5. 5.
    Bosc, P., Pivert, O.: Fuzzy queries and relational databases. In: 9th ACM Symposium on Applied Computing (SAC), pp. 170–174 (1994)Google Scholar
  6. 6.
    Chomicki, J.: Preference formulas in relational queries. ACM Transactions on Database Systems 28(4), 427–466 (2003)CrossRefGoogle Scholar
  7. 7.
    Chomicki, J.: Logical foundations of preference queries. IEEE Data Engineering Bulletin 34(2), 3–10 (2011)Google Scholar
  8. 8.
    Cignoli, R., Esteva, F., Godo, L., Torrens, A.: Basic fuzzy logic is the logic of continuous t-norms and their residua. Soft Computing - A Fusion of Foundations, Methodologies and Applications 4, 106–112 (2000)Google Scholar
  9. 9.
    Cintula, P., Hájek, P.: Triangular norm based predicate fuzzy logics. Fuzzy Sets and Systems 161, 311–346 (2010)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Codd, E.F.: A relational model of data for large shared data banks. Communications of the ACM 26, 64–69 (1983)CrossRefGoogle Scholar
  11. 11.
    Esteva, F., Godo, L.: Monoidal t-norm based logic: towards a logic for left-continuous t-norms. Fuzzy Sets and Systems 124(3), 271–288 (2001)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Galindo, J. (ed.): Handbook of Research on Fuzzy Information Processing in Databases. IGI Global (2008)Google Scholar
  13. 13.
    Goguen, J.A.: The logic of inexact concepts. Synthese 19, 325–373 (1979)CrossRefGoogle Scholar
  14. 14.
    HadjAli, A., Pivert, O.: Towards Fuzzy Query Answering Using Fuzzy Views – A Graded-Subsumption-Based Approach. In: An, A., Matwin, S., Raś, Z.W., Ślęzak, D. (eds.) ISMIS 2008. LNCS (LNAI), vol. 4994, pp. 268–277. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    HadjAli, A., Pivert, O.: A Fuzzy-Rule-Based Approach to the Handling of Inferred Fuzzy Predicates in Database Queries. In: Christiansen, H., De Tré, G., Yazici, A., Zadrozny, S., Andreasen, T., Larsen, H.L. (eds.) FQAS 2011. LNCS, vol. 7022, pp. 448–459. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer Academic Publishers, Dordrecht (1998)MATHCrossRefGoogle Scholar
  17. 17.
    Inoue, K., Wiese, L.: Generalizing Conjunctive Queries for Informative Answers. In: Christiansen, H., De Tré, G., Yazici, A., Zadrozny, S., Andreasen, T., Larsen, H.L. (eds.) FQAS 2011. LNCS, vol. 7022, pp. 1–12. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  18. 18.
    Li, C., Chang, K.C.C., Ilyas, I.F., Song, S.: RankSQL: query algebra and optimization for relational top-k queries. In: Proc. 2005 ACM SIGMOD, pp. 131–142 (2005)Google Scholar
  19. 19.
    Maier, D.: The Theory of Relational Databases. Computer Science Press (1983)Google Scholar
  20. 20.
    Mindolin, D., Chomicki, J.: Contracting preference relations for database applications. Artificial Intelligence 175(7-8), 1092–1121 (2011)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Pivert, O., Bosc, P.: Fuzzy Preference Queries to Relational Databases. Imperial College Press (2012)Google Scholar
  22. 22.
    Pivert, O., Smits, G., HadjAli, A., Jaudoin, H.: Efficient Detection of Minimal Failing Subqueries in a Fuzzy Querying Context. In: Eder, J., Bielikova, M., Tjoa, A.M. (eds.) ADBIS 2011. LNCS, vol. 6909, pp. 243–256. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  23. 23.
    Vaneková, V., Vojtáš, P.: Fuzziness as a model of user preference in semantic web search. In: European Society of Fuzzy Logic and Technology Conference (EUSFLAT), pp. 998–1003 (2009)Google Scholar
  24. 24.
    Zhang, X., Chomicki, J.: Preference queries over sets. In: 27th International Conference on Data Engineering (ICDE), pp. 1019–1030. IEEE Computer Society (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Lucie Urbanova
    • 1
  • Vilem Vychodil
    • 1
  • Lena Wiese
    • 2
  1. 1.DAMOL (Data Analysis and Modeling Laboratory) Dept. Computer SciencePalacky UniversityOlomoucCzech Republic
  2. 2.Institute of Computer ScienceUniversity of HildesheimHildesheimGermany

Personalised recommendations