Advertisement

Certain Conjunctive Query Answering in SQL

  • Alexandre Decan
  • Fabian Pijcke
  • Jef Wijsen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7520)

Abstract

An uncertain database db is defined as a database in which distinct tuples of the same relation can agree on their primary key. A repair (or possible world) of db is then obtained by selecting a maximal number of tuples without ever selecting two distinct tuples of the same relation that agree on their primary key. Given a query Q on db, the certain answer is the intersection of the answers to Q on all repairs. Recently, a syntactic characterization was obtained of the class of acyclic self-join-free conjunctive queries for which certain answers are definable by a first-order formula, called certain first-order rewriting [15]. In this article, we investigate the nesting and alternation of quantifiers in certain first-order rewritings, and propose two syntactic simplification techniques. We then experimentally verify whether these syntactic simplifications result in lower execution times on real-life SQL databases.

Keywords

Conjunctive Query Query Answering Probabilistic Database Attack Graph Nest Depth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arenas, M., Bertossi, L.E., Chomicki, J.: Consistent query answers in inconsistent databases. In: PODS, pp. 68–79. ACM Press (1999)Google Scholar
  2. 2.
    Beeri, C., Fagin, R., Maier, D., Yannakakis, M.: On the desirability of acyclic database schemes. J. ACM 30(3), 479–513 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Bertossi, L.E.: Database Repairing and Consistent Query Answering. Synthesis Lectures on Data Management. Morgan & Claypool Publishers (2011)Google Scholar
  4. 4.
    Chomicki, J., Marcinkowski, J.: Minimal-change integrity maintenance using tuple deletions. Inf. Comput. 197(1-2), 90–121 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Dalvi, N.N., Ré, C., Suciu, D.: Probabilistic databases: diamonds in the dirt. Commun. ACM 52(7), 86–94 (2009)CrossRefGoogle Scholar
  6. 6.
    Dalvi, N.N., Re, C., Suciu, D.: Queries and materialized views on probabilistic databases. J. Comput. Syst. Sci. 77(3), 473–490 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Fuxman, A., Fazli, E., Miller, R.J.: Conquer: Efficient management of inconsistent databases. In: Özcan, F. (ed.) SIGMOD Conference, pp. 155–166. ACM (2005)Google Scholar
  8. 8.
    Fuxman, A., Miller, R.J.: First-order query rewriting for inconsistent databases. J. Comput. Syst. Sci. 73(4), 610–635 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Kolaitis, P.G., Pema, E.: A dichotomy in the complexity of consistent query answering for queries with two atoms. Inf. Process. Lett. 112(3), 77–85 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Libkin, L.: Elements of Finite Model Theory. Springer (2004)Google Scholar
  11. 11.
    Maslowski, D., Wijsen, J.: A dichotomy in the complexity of counting database repairs. J. Comput. Syst. Sci. (in press)Google Scholar
  12. 12.
    Maslowski, D., Wijsen, J.: On counting database repairs. In: Fletcher, G.H.L., Staworko, S. (eds.) LID, pp. 15–22. ACM (2011)Google Scholar
  13. 13.
    Ullman, J.D.: Principles of Database and Knowledge-Base Systems, vol. I. Computer Science Press (1988)Google Scholar
  14. 14.
    Wijsen, J.: On the consistent rewriting of conjunctive queries under primary key constraints. Inf. Syst. 34(7), 578–601 (2009)CrossRefGoogle Scholar
  15. 15.
    Wijsen, J.: On the first-order expressibility of computing certain answers to conjunctive queries over uncertain databases. In: Paredaens, J., Gucht, D.V. (eds.) PODS, pp. 179–190. ACM (2010)Google Scholar
  16. 16.
    Wijsen, J.: A remark on the complexity of consistent conjunctive query answering under primary key violations. Inf. Process. Lett. 110(21), 950–955 (2010)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Wijsen, J.: Certain conjunctive query answering in first-order logic. ACM Trans. Database Syst. 37(2) (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Alexandre Decan
    • 1
  • Fabian Pijcke
    • 1
  • Jef Wijsen
    • 1
  1. 1.Université de MonsMonsBelgium

Personalised recommendations