Advertisement

Inconsistency Management for Traffic Regulations: Formalization and Complexity Results

  • Harald Beck
  • Thomas Eiter
  • Thomas Krennwallner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7519)

Abstract

Smart Cities is a vision driven by the availability of governmental data that fosters many challenging applications. One of them is the management of inconsistent traffic regulations, i.e., the handling of inconsistent traffic signs and measures in urban areas such as wrong sign posting, or errors in data acquisition in traffic sign administration software. We investigate such inconsistent traffic scenarios and formally model traffic regulations using a logic-based approach for traffic signs and measures, and logical theories describe emerging conflicts on a graph-based street model. Founded on this model, we consider major reasoning tasks including consistency testing, diagnosis, and repair, and we analyze their computational complexity for different logical representation formalisms. Our results provide a basis for an ongoing implementation of the approach.

Keywords

Speed Limit Smart City Effect Mapping Regulation Problem Road User 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Antoniou, G., Billington, D., Governatori, G., Maher, M.J.: Representation results for defeasible logic. ACM Trans. Comput. Logic 2(2), 255–287 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance. Commun. ACM 54(12), 92–103 (2011)CrossRefGoogle Scholar
  3. 3.
    Console, L., Torasso, P.: Automated diagnosis. Intelligenza Artificiale 3(1-2), 42–48 (2006)Google Scholar
  4. 4.
    Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and Expressive Power of Logic Programming. ACM Comput. Surv. 33(3), 374–425 (2001)CrossRefGoogle Scholar
  5. 5.
    Eiter, T., Faber, W., Fink, M., Woltran, S.: Complexity Results for Answer Set Programming with Bounded Predicate Arities. Ann. Math. Artif. Intell. 51(2-4), 123–165 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Eiter, T., Gottlob, G., Leone, N.: Abduction From Logic Programs: Semantics and Complexity. Theoretical Computer Science 189(1-2), 129–177 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A uniform integration of higher-order reasoning and external evaluations in answer set programming. In: IJCAI, pp. 90–96 (2005)Google Scholar
  8. 8.
    Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., Schneider, M.T.: Potassco: The Potsdam answer set solving collection. AI Commun. 24(2), 107–124 (2011)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive Databases. Next Generat. Comput. 9(3-4), 365–386 (1991)CrossRefzbMATHGoogle Scholar
  10. 10.
    de Kleer, J., Kurien, J.: Fundamentals of model-based diagnosis. In: IFAC Symposium SAFEPROCESS 2003, pp. 25–36. Elsevier (2003)Google Scholar
  11. 11.
    Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV System for Knowledge Representation and Reasoning. ACM TOCL 7(3), 499–562 (2006)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Lucas, P.: Symbolic diagnosis and its formalisation. Knowl. Eng. Rev. 12, 109–146 (1997)CrossRefGoogle Scholar
  13. 13.
    Maher, M.J.: Propositional defeasible logic has linear complexity. Theory Pract. Log. Program. 1(6), 691–711 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1994)Google Scholar
  15. 15.
    Poole, D.: Normality and faults in logic-based diagnosis. In: IJCAI, pp. 1304–1310 (1989)Google Scholar
  16. 16.
    Poole, D.: Representing diagnosis knowledge. Ann. Math. Artif. Intell. 11, 33–50 (1994)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Harald Beck
    • 1
  • Thomas Eiter
    • 1
  • Thomas Krennwallner
    • 1
  1. 1.Institute of Information SystemsVienna University of TechnologyViennaAustria

Personalised recommendations