Sequent Systems for Lewis’ Conditional Logics

  • Björn Lellmann
  • Dirk Pattinson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7519)

Abstract

We present unlabelled cut-free sequent calculi for Lewis’ conditional logic \(\mathbb V\) and extensions, in both the languages with the entrenchment connective and the strong conditional. The calculi give rise to Pspace-decision procedures, also in the language with the weak conditional. Furthermore, they are used to prove the Craig interpolation property for all the logics under consideration, and yield a Pspace-decision procedure for a recently considered hybrid version of \(\mathbb V\).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Crocco, G., Fariñas del Cerro, L.: Structure, consequence relation and logic. In: Gabbay, D.M. (ed.) What is a logical system?, pp. 239–259. Oxford University Press (1994)Google Scholar
  2. 2.
    de Swart, H.C.: A Gentzen- or Beth-type system, a practical decision procedure and a constructive completeness proof for the counterfactual logics VC and VCS. J. Symb. Log. 48(1), 1–20 (1983)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Friedman, N., Halpern, J.Y.: On the complexity of conditional logics. In: KR 1994, pp. 202–213 (1994)Google Scholar
  4. 4.
    Gent, I.P.: A sequent- or tableau-style system for Lewis’s counterfactual logic VC. Notre Dame J. Form. Log. 33(3), 369–382 (1992)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Gentzen, G.: Untersuchungen über das logische Schließen. I. Math. Z. 39(2), 176–210 (1934)MathSciNetMATHGoogle Scholar
  6. 6.
    Ginsberg, M.L.: Counterfactuals. Artif. Intell. 30, 35–79 (1986)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Analytic tableaux calculi for KLM logics of nonmonotonic reasoning. ACM Trans. Comput. Log. 10(3) (2009)Google Scholar
  8. 8.
    Giordano, L., Gliozzi, V., Olivetti, N., Schwind, C.: Tableau calculus for preference-based conditional logics: PCL and its extensions. ACM Trans. Comput. Log. 10(3), 1–50 (2009)MathSciNetMATHGoogle Scholar
  9. 9.
    Groeneboer, C., Delgrande, J.P.: Tableau-based theorem proving in normal conditional logics. In: AAAI, pp. 171–176 (1988)Google Scholar
  10. 10.
    Lellmann, B., Pattinson, D.: Cut Elimination for Shallow Modal Logics. In: Brünnler, K., Metcalfe, G. (eds.) TABLEAUX 2011. LNCS, vol. 6793, pp. 211–225. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Lewis, D.: Counterfactuals. Blackwell (1973)Google Scholar
  12. 12.
    Myers, R., Pattinson, D., Schröder, L.: Coalgebraic Hybrid Logic. In: de Alfaro, L. (ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 137–151. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Nute, D., Cross, C.B.: Conditional logic. In: Gabbay, D.M., Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. 4, pp. 1–98. Kluwer (2001)Google Scholar
  14. 14.
    Olivetti, N., Pozzato, G.L., Schwind, C.: A sequent calculus and a theorem prover for standard conditional logics. ACM Trans. Comput. Log. 8(4), 1–51 (2007)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Pattinson, D., Schröder, L.: Generic modal cut elimination applied to conditional logics. Log. Methods Comput. Sci. 7(1) (2011)Google Scholar
  16. 16.
    Sano, K.: Hybrid counterfactual logics - David Lewis meets Arthur Prior again. J. Log. Lang. Inf. 18, 515–539 (2009)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Schröder, L., Pattinson, D., Hausmann, D.: Optimal tableaux for conditional logics with cautious monotonicity. In: ECAI, pp. 707–712 (2010)Google Scholar
  18. 18.
    Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory, 2nd edn. Cambridge University Press (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Björn Lellmann
    • 1
  • Dirk Pattinson
    • 1
  1. 1.Department of ComputingImperial College LondonUK

Personalised recommendations