Extending a Temporal Defeasible Argumentation Framework with Possibilistic Weights

  • Lluís Godo
  • Enrico Marchioni
  • Pere Pardo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7519)


Recently, a temporal extension of the argumentation defeasible reasoning system \(\mbox{\textsf{DeLP}}\) has been proposed. This system, called \(\mbox{\textsf{t-DeLP}}\), allows to reason defeasibly about changes and persistence over time but does not offer the possibility of ranking defeasible rules according to criteria of preference or certainty (in the sense of belief). In this contribution we extend \(\mbox{\textsf{t-DeLP}}\) by allowing to attach uncertainty weights to defeasible temporal rules and hence stratifying the set of defeasible rules in a program. Technically speaking, weights are modelled as necessity degrees within the frame of possibility theory, a qualitative model of uncertainty.


Logic Programming Argumentation Framework Possibilistic Logic Conservative Extension Defeasible Reasoning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alsinet, T., Béjar, R., Godo, L.: A characterization of collective conflict for defeasible argumentation. In: Proc. of COMMA 2010, pp. 27–38 (2010)Google Scholar
  2. 2.
    Alsinet, T., Chesñevar, C.I., Godo, L., Sandri, S., Simari, G.R.: Formalizing argumentative reasoning in a possibilistic logic programming setting with fuzzy unification. Int. J. Approx. Reasoning 48(3), 711–729 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Alsinet, T., Chesñevar, C.I., Godo, L., Simari, G.R.: A Logic Programming Framework for Possibilistic Argumentation: Formalization and Logical Properties. Fuzzy Sets and Systems 159, 1208–1228 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Andréka, H., Ryan, M., Schobbens, P.Y.: Operators and laws for combining preference relations. J. of Logic and Computation 12(1), 13–53 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Augusto, J.: Simari G. R. Temporal Defeasible Reasoning. Knowledge and Information Systems 3, 287–318 (2001)CrossRefGoogle Scholar
  6. 6.
    Billington, D.: Defeasible logic is stable. J. of Logic and Computation 3, 379–400 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Caminada, M., Amgoud, L.: On the evaluation of argumentation formalisms. Artificial Intelligence 171, 286–310 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Capobianco, M., Simari, G.R.: A Proposal for Making Argumentation Computationally Capable of Handling Large Repositories of Uncertain Data. In: Godo, L., Pugliese, A. (eds.) SUM 2009. LNCS, vol. 5785, pp. 95–110. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Cobo, L., Martínez, D., Simari, G.R.: On Admissibility in Timed Abstract Argumentation Frameworks. In: Proc. of ECAI 2010, pp. 1007–1008. IOS Press (2010)Google Scholar
  10. 10.
    Dubois, D., Lang, J., Prade, H.: Timed possibilistic logic. Fundamenta Informaticae 15(3-4), 211–234 (1991)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Dubois, D., Prade, H.: Possibilistic logic: a retrospective and prospective view. Fuzzy Sets and Systems 144(1), 3–23 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Dung, P.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artificial Intelligence 77(2), 321–357 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    García, A., Simari, G.R.: Defeasible logic programming: An argumentative approach. Theory and Practice of Logic Programming 4(1+2), 95–138 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Governatori, G., Terenziani, P.: Temporal Extensions to Defeasible Logic. In: Orgun, M.A., Thornton, J. (eds.) AI 2007. LNCS (LNAI), vol. 4830, pp. 476–485. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Mann, N., Hunter, A.: Argumentation Using Temporal Knowledge. In: Proc. of COMMA 2008, pp. 204–215. IOS Press (2008)Google Scholar
  16. 16.
    Nute, D.: Defeasible logic. In: Handbook of Logic in Artificial Intelligence and Logic Programming, vol. 3, pp. 353–395. Oxford University Press (1994)Google Scholar
  17. 17.
    Pardo, P., Godo, L.: t-DeLP: A Temporal Extension of the Defeasible Logic Programming Argumentative Framework. In: Benferhat, S., Grant, J. (eds.) SUM 2011. LNCS, vol. 6929, pp. 489–503. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Lluís Godo
    • 1
  • Enrico Marchioni
    • 1
  • Pere Pardo
    • 1
    • 2
  1. 1.Artificial Intelligence Research Institute,IIIASpanish National Research Council,CSICBellaterraSpain
  2. 2.Dept. Lògica, Història i Filosofia de la CiènciaUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations