Advertisement

Exploiting Unfounded Sets for HEX-Program Evaluation

  • Thomas Eiter
  • Michael Fink
  • Thomas Krennwallner
  • Christoph Redl
  • Peter Schüller
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7519)

Abstract

HEX programs extend logic programs with external computations through external atoms, whose answer sets are the minimal models of the Faber-Leone-Pfeifer-reduct. As already reasoning from Horn programs with nonmonotonic external atoms of polynomial complexity is on the second level of the polynomial hierarchy, answer set checking needs special attention; simply computing reducts and searching for smaller models does not scale well. We thus extend an approach based on unfounded sets to HEX and integrate it in a Conflict Driven Clause Learning framework for HEX program evaluation. It reduces the check to a search for unfounded sets, which is more efficiently implemented as a SAT problem. We give a basic encoding for HEX and show optimizations by additional clauses. Experiments show that the new approach significantly decreases runtime.

Keywords

Answer Set Programming Nonmonotonic Reasoning Unfounded Sets FLP Semantics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brewka, G., Eiter, T.: Equilibria in Heterogeneous Nonmonotonic Multi-Context Systems. In: AAAI 2007, pp. 385–390. AAAI Press (2007)Google Scholar
  2. 2.
    Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance. Commun. ACM 54(12), 92–103 (2011)CrossRefGoogle Scholar
  3. 3.
    Drescher, C., Gebser, M., Grote, T., Kaufmann, B., König, A., Ostrowski, M., Schaub, T.: Conflict-driven disjunctive answer set solving. In: KR 2008, pp. 422–432. AAAI Press (2008)Google Scholar
  4. 4.
    Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2), 321–357 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Eiter, T., Fink, M., Ianni, G., Krennwallner, T., Schüller, P.: Pushing Efficient Evaluation of HEX Programs by Modular Decomposition. In: Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS, vol. 6645, pp. 93–106. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Eiter, T., Fink, M., Krennwallner, T., Redl, C.: Conflict-driven ASP solving with external sources. Theor. Pract. Log. Prog. (to appear, 2012)Google Scholar
  7. 7.
    Eiter, T., Fink, M., Krennwallner, T., Redl, C., Schüller, P.: Improving HEX-Program Evaluation based on Unfounded Sets. Tech. Rep. INFSYS RR-1843-12-08. TU, Wein (2012)Google Scholar
  8. 8.
    Eiter, T., Fink, M., Schüller, P., Weinzierl, A.: Finding explanations of inconsistency in Multi-Context Systems. In: KR 2010, pp. 329–339. AAAI Press (2010)Google Scholar
  9. 9.
    Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A Uniform Integration of Higher-Order Reasoning and External Evaluations in Answer-Set Programming. In: IJCAI 2005, pp. 90–96. Professional Book Center (2005)Google Scholar
  10. 10.
    Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: Effective Integration of Declarative Rules with External Evaluations for Semantic-Web Reasoning. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 273–287. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Faber, W.: Unfounded Sets for Disjunctive Logic Programs with Arbitrary Aggregates. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 40–52. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Faber, W., Leone, N., Pfeifer, G.: Semantics and complexity of recursive aggregates in answer set programming. Artif. Intell. 175(1), 278–298 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven answer set solving: From theory to practice. Artif. Intell. 188, 52–89 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive Databases. New Generat. Comput. 9(3-4), 365–386 (1991)CrossRefzbMATHGoogle Scholar
  15. 15.
    Koch, C., Leone, N., Pfeifer, G.: Enhancing disjunctive logic programming systems by SAT checkers. Artif. Intell. 151(1-2), 177–212 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Leone, N., Rullo, P., Scarcello, F.: Disjunctive Stable Models: Unfounded Sets, Fixpoint Semantics and Computation. Inform. Comput. 135(2), 69–112 (1997)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Thomas Eiter
    • 1
  • Michael Fink
    • 1
  • Thomas Krennwallner
    • 1
  • Christoph Redl
    • 1
  • Peter Schüller
    • 1
  1. 1.Institut für InformationssystemeTechnische Universität WienViennaAustria

Personalised recommendations