A Cellular Automata-Based Network Model for Heterogeneous Traffic: Intersections, Turns and Their Connection

  • Jelena Vasic
  • Heather J. Ruskin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7495)


The pedal bicycle as a means of transport is gaining new popularity in a world of growing environmental and health concerns. Research relating to bicycles is generally in the area of planning and behaviour, however, flow models that include this non-motorised modality have also been defined, especially for developing-world scenarios. This paper describes a cellular-automata based model for mixed bicycle and motorised traffic on city networks where roads are shared through ‘positional discipline’, as in Dublin and other old city centres. The paper analyses the spatial properties of a particular instance of the model in some detail and presents results that demonstrate them. It also looks at a number of considerations relating to the the model’s implementation.


traffic cellular automata transportation network non-motorised modes heterogeneous traffic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Belbasi, S., Foulaadvand, M.: Simulation of traffic flow at a signalized intersection. J. Stat. Mech., P07021 (2008)Google Scholar
  2. 2.
    Biham, O., Middleton, A., Levine, D.: Self-organization and a dynamical transition in traffic-flow models. Phys. Rev. A 46, R6124–R6127 (1992)CrossRefGoogle Scholar
  3. 3.
    Brockfeld, E., Barlovic, R., Schadschneider, A., Schreckenberg, M.: Optimizing traffic lights in a cellular automaton model for city traffic. Phys. Rev. E 64, 056132 (2001)CrossRefGoogle Scholar
  4. 4.
    Cheng, S.H., Yao, D.Y., Zhang, Y., Su, Y.L., Xu, W.D.: A ca model for intrusion conflicts simulation in vehicles-bicycles laminar traffic flow. In: Proceedings of the 11th International IEEE Conference on Intelligent Transportation Systems Beijing, China, October 12-15 (2008)Google Scholar
  5. 5.
    Chopard, B., Luthi, P., Queloz, P.: Cellular automata model of car traffic in a two-dimensional street network. J. Phys. A 29, 2325–2336 (1996)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Esser, J., Schreckenberg, M.: Microscopic simulation of urban traffic based on cellular automata. Int. J. Mod. Phys. C 8, 1025–1036 (1997)CrossRefGoogle Scholar
  7. 7.
    Fouladvand, M., Sadjadi, Z., Shaebani, M.: Characteristics of vehicular traffic flow at a roundabout. Phys. Rev. E 70, 046132 (2004)CrossRefGoogle Scholar
  8. 8.
    Fouladvand, M., Sadjadi, Z., Shaebani, M.: Optimized traffic flow at a single intersection: traffic responsive signalization. J. Phys. A 37, 561–576 (2004)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Gundaliya, P.J., Mathew, T.V., Dhingra, S.L.: Heterogeneous traffic flow modelling for an arterial using grid based approach. J. Adv. Transport 42, 467–491 (2008)CrossRefGoogle Scholar
  10. 10.
    Huang, D., Huang, W.: Traffic signal synchronization. Phys. Rev. E 67, 056124 (2003)CrossRefGoogle Scholar
  11. 11.
    Jia, B., Li, X.G., Jiang, R., Gao, Z.Y.: Multi-value cellular automata model for mixed bicycle flow. Eur. Phys. J. B 56, 247–252 (2007)MATHCrossRefGoogle Scholar
  12. 12.
    Li, X.G., Gao, Z.Y., Jia, B., Zhao, X.M.: Cellular automata model for unsignalized t-shaped intersection. Int. J. Mod. Phys. C 20, 501–512 (2009)MATHCrossRefGoogle Scholar
  13. 13.
    Li, X.G., Gao, Z.Y., Jia, B., Zhao, X.M.: Modeling the interaction between motorized vehicle and bicycle by using cellular automata model. Int. J. Mod. Phys. C 20, 209–222 (2009)MATHCrossRefGoogle Scholar
  14. 14.
    Maerivoet, S., De Moor, B.: Cellular automata models of road traffic. Phys. Rep. 419, 1–64 (2005)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Mallikarjuna, C., Rao, K.R.: Cellular automata model for heterogeneous traffic. J. Adv. Transport 43, 321–345 (2009)CrossRefGoogle Scholar
  16. 16.
    Nagatani, T.: Shock formation and traffic jam induced by a crossing in the 1d asymmetric exclusion model. J. Phys. A 26, 6625–6634 (1993)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Nagel, K., Schreckenberg, M.: A cellular automaton model for freeway traffic. J. Phys. I 2, 2221–2229 (1992)CrossRefGoogle Scholar
  18. 18.
    Scellato, S., Fortuna, L., Frasca, M., Gómez-Gardeñes, J., Latora, V.: Traffic optimization in transport networks based on local routing. Eur. Phys. J. B 73, 303–308 (2010)MATHCrossRefGoogle Scholar
  19. 19.
    Simon, P.M., Gutowitz, H.A.: Cellular automaton model for bidirectional traffic. Phys. Rev. E 57, 2441–2444 (1998)CrossRefGoogle Scholar
  20. 20.
    Tonguz, O.K., Viriyasitavat, W., Bai, F.: Modeling urban traffic: A cellular automata approach. IEEE Commun. Mag. 47, 142–150 (2009)CrossRefGoogle Scholar
  21. 21.
    Vasic, J., Ruskin, H.J.: Cellular automata simulation of traffic including cars and bicycles. Physica A 391, 2720–2729 (2012)CrossRefGoogle Scholar
  22. 22.
    Wahle, J., Schreckenberg, M.: A multi-agent system for on-line simulations based on real-world traffic data. In: Hawaii International Conference on System Sciences, vol. 3, p. 3037 (2001)Google Scholar
  23. 23.
    Wang, R., Ruskin, H.J.: Modelling Traffic Flow at a Multilane Intersection. In: Kumar, V., Gavrilova, M.L., Tan, C.J.K., L’Ecuyer, P. (eds.) ICCSA 2003, Part I. LNCS, vol. 2667, pp. 577–586. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  24. 24.
    Wang, R., Ruskin, H.J.: Modelling traffic flow at multi-lane urban roundabouts. Int. J. Mod. Phys. C 17, 693–710 (2006)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jelena Vasic
    • 1
  • Heather J. Ruskin
    • 1
  1. 1.Dublin City UniversityDublinIreland

Personalised recommendations