m-Asynchronous Cellular Automata

  • Alberto Dennunzio
  • Enrico Formenti
  • Luca Manzoni
  • Giancarlo Mauri
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7495)

Abstract

A new model for the study of ACA dynamical behavior has been introduced. The classical properties of injectivity, surjectivity and expansivity have been adapted to the new setting. Preliminary results show that the injectivity is almost always equal to surjectivity and that both property are almost always implied by expansivity.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bersini, H., Detours, V.: Asynchrony induces stability in cellular automata based models. In: Proceedings of Artificial Life IV, pp. 382–387. MIT Press, Cambridge (1994)Google Scholar
  2. 2.
    Buvel, R.L., Ingerson, T.E.: Structure in asynchronous cellular automata. Physica D 1, 59–68 (1984)Google Scholar
  3. 3.
    Cantelli, F.P.: Sulla probabilità come limite della frequenza. Rend. Accad. dei Lincei 24, 39–45 (1917)Google Scholar
  4. 4.
    Chaudhuri, P., Chowdhury, D., Nandi, S., Chattopadhyay, S.: Additive Cellular Automata Theory and Applications, vol. 1. IEEE Press, New York (1997)MATHGoogle Scholar
  5. 5.
    Chopard, B.: Modelling physical systems by cellular automata. In: Rozenberg, G., et al. (eds.) Handbook of Natural Computing: Theory, Experiments, and Applications. Springer (2010)Google Scholar
  6. 6.
    Fagnani, F., Margara, L.: Expansivity, permutivity, and chaos for cellular automata. Theory Comput. Syst. 31(6), 663–677 (1998)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Fatès, N., Morvan, M.: An experimental study of robustness to asynchronism for elementary cellular automata. Complex Systems 16(1), 1–27 (2005)MathSciNetGoogle Scholar
  8. 8.
    Fatès, N., Morvan, M., Schabanel, N., Thierry, E.: Fully asynchronous behaviour of double-quiescent elementary cellular automata. Theoretical Computer Science 362, 1–16 (2006)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Fatès, N., Regnault, D., Schabanel, N., Thierry, É.: Asynchronous Behavior of Double-Quiescent Elementary Cellular Automata. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 455–466. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Fukś, H.: Non-deterministic density classification with diffusive probabilistic cellular automata. Physical Review E 66(2) (2002)Google Scholar
  11. 11.
    Fukś, H.: Probabilistic cellular automata with conserved quantities. Nonlinearity 17(1), 159–173 (2004)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Halmos, P.R.: Measure theory. Graduate texts in Mathematics, vol. 38. Springer (1974)Google Scholar
  13. 13.
    Hedlund, G.A.: Endomorphisms and automorphisms of the shift dynamical system. Mathematical Systems Theory 3, 320–375 (1969)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Kier, L.B., Seybold, P.G., Cheng, C.-K.: Modeling Chemical Systems using Cellular Automata. Springer (2005)Google Scholar
  15. 15.
    Kůrka, P.: Languages, equicontinuity and attractors in cellular automata. Ergodic Theory & Dynamical Systems 17, 417–433 (1997)MATHCrossRefGoogle Scholar
  16. 16.
    Lee, J., Adachi, S., Peper, F., Mashiko, S.: Delay-insensitive computation in asynchronous cellular automata. J. Comput. Syst. Sci. 70, 201–220 (2005)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Lumer, E.D., Nicolis, G.: Synchronous versus asynchronous dynamics in spatially distributed systems. Physica D 71, 440–452 (1994)Google Scholar
  18. 18.
    Macauley, M., McCammond, J., Mortveit, H.S.: Order independence in asynchronous cellular automata. J. Cellular Automata 3(1), 37–56 (2008)MathSciNetMATHGoogle Scholar
  19. 19.
    Manzoni, L.: Asynchronous cellular automata and dynamical properties. Natural Computing 11(2), 269–276 (2012)CrossRefGoogle Scholar
  20. 20.
    Nakamura, K.: Asynchronous cellular automata and their computational ability. Systems, Computers, Control 5, 58–66 (1974)Google Scholar
  21. 21.
    Regnault, D.: Abrupt behaviour changes in cellular automata under asynchronous dynamics. In: Electronic Proc. of 2nd European Conference on Complex Systems, 6 pages. ECCS, Oxford, UK (2006)Google Scholar
  22. 22.
    Regnault, D., Schabanel, N., Thierry, E.: Progresses in the analysis of stochastic 2d cellular automata: A study of asynchronous 2d minority. Theoretical Computer Science 410, 4844–4855 (2009)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Schönfisch, B., de Roos, A.: Synchronous and asynchronous updating in cellular automata. BioSystems 51, 123–143 (1999)CrossRefGoogle Scholar
  24. 24.
    Worsch, T.: A note on (intrinsically?) universal asynchronous cellular automata. In: Proceedings of Automata 2010, Nancy, France, June 14-16, pp. 339–350 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Alberto Dennunzio
    • 1
  • Enrico Formenti
    • 2
  • Luca Manzoni
    • 1
  • Giancarlo Mauri
    • 1
  1. 1.Dipartimento di Informatica, Sistemistica e ComunicazioneUniversità degli Studi di Milano–BicoccaMilanoItaly
  2. 2.Laboratoire I3SUniversité Nice-Sophia AntipolisSophia AntipolisFrance

Personalised recommendations