Advertisement

Coupling Method for Building a Network of Irrigation Canals on a Distributed Computing Environment

  • Mohamed Ben Belgacem
  • Bastien Chopard
  • Andrea Parmigiani
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7495)

Abstract

An optimal management of an irrigation network is important to ensure an efficient water supply and to predict critical situations related to natural hazards. We present a multiscale coupling methodology to simulate numerically an entire irrigation canal over a distributed High Performance Computing (HPC) resource. We decompose the network into several segments that are coupled through junctions. Our coupling strategy, based on the concept of Complex Automata (CxA) and the Multiscale Modeling Language (MML), aims at coupling simple 1D model of canal sections with 3D complex ones. Our goal is to build a numerical model that can be run over a distributed grid infrastructure, thus offering a large amount of computing resources. We illustrate our approach by coupling two canal sections in 1D through a gate.

Keywords

irrigation canal lattice Boltzmann models coupling method distributed multiscale computing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
  3. 3.
  4. 4.
    OpenPBS: Open Portable Batch System, http://www.pbsworks.com/
  5. 5.
    Palabos toolkit, http://www.palabos.org/
  6. 6.
    Hoekstra, A., Lorenz, E., Falcone, J.-L., Chopard, B.: Towards a Complex automata formalism for multuscale modeling. Int. J. Multiscale Multiscale Computational Engineering 5(6), 491–502 (2008)CrossRefGoogle Scholar
  7. 7.
    Bosak, B., Komasa, J., Kopta, P., Kurowski, K., Mamoński, M., Piontek, T.: New Capabilities in QosCosGrid Middleware for Advanced Job Management, Advance Reservation and Co-allocation of Computing Resources – Quantum Chemistry Application Use Case. In: Bubak, M., Szepieniec, T., Wiatr, K. (eds.) PL-Grid 2011. LNCS, vol. 7136, pp. 40–55. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Borgdorff, J., Lorenz, E., Hoekstra, A.G., Falcone, J., Chopard, B.: A Principled Approach to Distributed Multiscale Computing, from Formalization to Execution. In: 2011 IEEE Seventh International Conference on e-Science Workshops (eScienceW), pp. 97–104 (December 2011)Google Scholar
  9. 9.
    Chopard, B., Droz, M.: Cellular Automata Modeling Of Physical Systems. Cambridge University Press, Aléa-Saclay (1998)zbMATHCrossRefGoogle Scholar
  10. 10.
  11. 11.
    Falcone, J.-L., Chopard, B., Hoekstra, A.: MML: towards a Multiscale Modeling Language. Procedia Computer Science 1(1), 819–826 (2010)CrossRefGoogle Scholar
  12. 12.
    Graf, W.H., Altinakar, M.S.: Hydraulique fluviale: écoulement et phénomènes de transport dans les canaux à géométrie simple. Traité de génie civil de l’Ecole polytechnique fédérale de Lausanne. Presses Polytechniques Universitaires Romandes (2008)Google Scholar
  13. 13.
    Hegewald, J., Krafczyk, M., Tlke, J., Hoekstra, A., Chopard, B.: An Agent-Based Coupling Platform for Complex Automata. In: Bubak, M., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2008, Part II. LNCS, vol. 5102, pp. 227–233. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Hoekstra, A., Falcone, J.L., Caiazzo, A., Chopard, B.: Multi-scale modeling with cellular automata: the complex automata approach. Cellular Automata 5191, 192–199 (2010)CrossRefGoogle Scholar
  15. 15.
    Hoekstra, A.G., Caiazzo, A., Lorenz, E., Falcone, J.-L., Chopard, B.: Complex automata: multi-scale modeling with coupled cellular automata. In: Hoekstra, A., Kroc, J., Sloot, P. (eds.) Modeling Complex Systems with Cellular Automata, vol. 3. Springer (2010)Google Scholar
  16. 16.
    Lagrava, D., Malaspinas, O., Latt, J., Chopard, B.: Advances in multi-domain lattice Boltzmann grid refinement. Journal of Computational Physics 231(14), 4808–4822 (2012)zbMATHCrossRefGoogle Scholar
  17. 17.
    van Thang, P., Chopard, B., Lefèvre, L., Ondo, D.A., Mendes, E.: Study of the 1D lattice Boltzmann shallow water equation and its coupling to build a canal network. Journal of Computational Physics 229(19), 7373–7400 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Sukop, M.C., Thorne, D.T.: Lattice Boltzmann Modeling: An Introduction for Geoscientists and Engineers, 1st edn. Springer (January 2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Mohamed Ben Belgacem
    • 1
  • Bastien Chopard
    • 1
  • Andrea Parmigiani
    • 1
  1. 1.University of GenevaSwitzerland

Personalised recommendations