Advertisement

Network View of Binary Cellular Automata

  • Yoshihiko Kayama
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7495)

Abstract

The network view of cellular automata focuses on the effective relationships between cells rather than the states themselves. In this article, we review a network representation presented in previous papers and present network graphs derived from all independent rules of one-dimensional elementary cellular automata and totalistic five-neighbor cellular automata. Removal of the transient effects of initial configurations improves the visibility of the dynamical characteristics of each rule. Power-law distributions of lifetimes and sizes of avalanches caused by one-cell perturbations of an attractor are exhibited by the derived network of Rule 11 (or 52) of totalistic five-neighbor cellular automata.

Keywords

Cellular Automaton Complex Network Scale-free 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    von Neumann, J.: The theory of self-reproducing automata. In: Burks, A.W. (ed.) Essays on Cellular Automata. University of Illinois Press (1966)Google Scholar
  2. 2.
    Wolfram, S.: Statistical mechanics of cellular automata. Rev. Mod. Phys. 55, 601–644 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Gardner, M.: Mathematical games. Scientific American 223, 120–123 (1970)CrossRefGoogle Scholar
  4. 4.
    Berlekamp, E.R., Conway, J.H., Guy, R.K.: Winning Ways for Your Mathematical Plays, vol. 2. Academic Press, New York (1982)zbMATHGoogle Scholar
  5. 5.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998)CrossRefGoogle Scholar
  6. 6.
    Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Kayama, Y.: Complex networks derived from cellular automata. arXiv:1009.4509 (2010)Google Scholar
  8. 8.
    Kayama, Y.: Network representation of cellular automata. In: 2011 IEEE Symposium on Artificial Life (IEEE ALIFE 2011) at SSCI 2011, pp. 194–202 (2011)Google Scholar
  9. 9.
    Kayama, Y., Imamura, Y.: Network representation of the game of life. Journal of Artificial Intelligence and Soft Computing Research 1 (3), 233–240 (2011)Google Scholar
  10. 10.
    Bak, P., Tang, C., Wiesenfeld, K.: Self-organized criticality: an explanation of 1/f noise. Physical Review Letters 59 (4), 381–384 (1987)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Bak, P., Chen, K., Creutz, M.: Self-organized criticality in the ’game of life’. Nature (London) 342, 780 (1989)CrossRefGoogle Scholar
  12. 12.
    Kayama, Y.: Network representation of the game of life and self-organized criticality (extended abstract). To be appeared in the Proceedings of the 13th International Conference on the Simulation & Synthesis of Living Systems (2012)Google Scholar
  13. 13.
    Wolfram, S.: A New Kind of Science. Wolfram Media, Inc. (2002)Google Scholar
  14. 14.
    Callahan, P.: Patterns, programs, and links for conway’s game of life (1995), http://www.radicaleye.com/lifepage/ (retrieved at February 1, 2011)
  15. 15.
    Flammenkamp, A.: Achim’s game of life page (1998), http://wwwhomes.uni-bielefeld.de/achim/gol.html (retrieved at December 12, 2011)
  16. 16.
    Kayama, Y.: Network View of Conway’s Game of Life. Wolfram Demonstrations Project (2012), http://demonstrations.wolfram.com/NetworkViewOfConwaysGameOfLife/
  17. 17.
    Latora, V., Marchiori, M.: Efficient behavior of small-world networks. Phys. Rev. Lett. 87, 198701–198704 (2001)CrossRefGoogle Scholar
  18. 18.
    Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.U.: Complex networks: Structure and dynamics. Physics Reports 424, 175–308 (2006)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Wasserman, S., Faust, K.: Social Network Analysis. Cambridge University Press (1994)Google Scholar
  20. 20.
    Fagiolo, G.: Clustering in complex directed networks. Phys. Rev. E 76, 026107–026114 (2007)Google Scholar
  21. 21.
    Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-law distributions in empirical data. SIAM Review 51, 661–703 (2009)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Yoshihiko Kayama
    • 1
  1. 1.Department of Media and InformationBAIKA Women’s UniversityIbarakiJapan

Personalised recommendations