Evaluating Electricity Theft Detectors in Smart Grid Networks

  • Daisuke Mashima
  • Alvaro A. Cárdenas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7462)


Electricity theft is estimated to cost billions of dollars per year in many countries. To reduce electricity theft, electric utilities are leveraging data collected by the new Advanced Metering Infrastructure (AMI) and using data analytics to identify abnormal consumption trends and possible fraud. In this paper, we propose the first threat model for the use of data analytics in detecting electricity theft, and a new metric that leverages this threat model in order to evaluate and compare anomaly detectors. We use real data from an AMI system to validate our approach.


False Alarm Electricity Consumption Smart Grid Threat Model Average Detector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
  3. 3.
  4. 4.
    Antmann, P.: Reducing technical and non-technical losses in the power sector. Technical report, World Bank (July 2009)Google Scholar
  5. 5.
    Appel, A.: Security seals on voting machines: A case study. ACM Transactions on Information and Systems Security 14, 1–29 (2011)CrossRefGoogle Scholar
  6. 6.
    Bandim, C., Alves Jr., J., Pinto Jr., A., Souza, F., Loureiro, M., Magalhaes, C., Galvez-Durand, F.: Identification of energy theft and tampered meters using a central observer meter: a mathematical approach. In: 2003 IEEE PES Transmission and Distribution Conference and Exposition, vol. 1, pp. 163–168. IEEE (2003)Google Scholar
  7. 7.
    Breunig, M., Kriegel, H.-P., Ng, R.T., Sander, J.: Lof: Identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, pp. 93–104. ACM (2000)Google Scholar
  8. 8.
    Brodsky, B., Darkhovsky, B.: Non-Parametric Methods in Change-Point Problems. Kluwer Academic Publishers (1993)Google Scholar
  9. 9.
    Davis, M.: Smartgrid device security. adventures in a new medium (July 2009),
  10. 10.
    De Buda, E.: System for accurately detecting electricity theft. US Patent Application 12/351978 (January 2010)Google Scholar
  11. 11.
    Depuru, S., Wang, L., Devabhaktuni, V.: Support vector machine based data classification for detection of electricity theft. In: Power Systems Conference and Exposition (PSCE), 2011 IEEE/PES, pp. 1–8 (March 2011)Google Scholar
  12. 12.
    ECI Telecom. Fighting Electricity Theft with Advanced Metering Infrastructure (March 2011)Google Scholar
  13. 13.
    Geschickter, C.: The Emergence of Meter Data Management (MDM): A Smart Grid Information Strategy Report. GTM Research (2010)Google Scholar
  14. 14.
    Krebs, B.: FBI: smart meter hacks likely to spread (April 2012),
  15. 15.
    Lesser, A.: When big IT goes after big data on the smart grid (March 2012),
  16. 16.
    McLaughlin, S., Podkuiko, D., McDaniel, P.: Energy Theft in the Advanced Metering Infrastructure. In: Rome, E., Bloomfield, R. (eds.) CRITIS 2009. LNCS, vol. 6027, pp. 176–187. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    McLaughlin, S., Podkuiko, D., Miadzvezhanka, S., Delozier, A., McDaniel, P.: Multi-vendor penetration testing in the advanced metering infrastructure. In: Proceedings of the Annual Computer Security Applications Conference (ACSAC) (December 2010)Google Scholar
  18. 18.
    Nagi, J., Yap, K.S., Tiong, S.K., Ahmed, S.K., Mohamad, M.: Nontechnical loss detection for metered customers in power utility using support vector machines. IEEE Transactions on Power Delivery Systems 25(2), 1162–1171 (2010)CrossRefGoogle Scholar
  19. 19.
    Nizar, A., Dong, Z.: Identification and detection of electricity customer behaviour irregularities. In: Power Systems Conference and Exposition (PSCE), pp. 1–10 (March 2009)Google Scholar
  20. 20.
    Peterson, D.: AppSecDC in review: Real-world backdoors on industrial devices (April 2012),
  21. 21.
    Smart Grid Interoperability Panel, editor. NISTIR 7628. Guidelines for Smart Grid Cyber Security. NIST (August 2010)Google Scholar
  22. 22.
    Sommer, R., Paxson, V.: Outside the closed world: On using machine learning for network intrusion detection. In: IEEE Symposium on Security and Privacy (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Daisuke Mashima
    • 1
  • Alvaro A. Cárdenas
    • 2
  1. 1.Georgia Institute of TechnologyUSA
  2. 2.Fujitsu Laboratories of AmericaUSA

Personalised recommendations