Two Observations in Dioid Based Model Refinement

  • Roland Glück
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7560)


Dioid based model refinement is an abstract framework for optimality problems on labelled graphs such as the shortest path problem or the maximum capacity problem. Here we show two facts in this area: first, via a language theoretic approach that models with a binary set of edge labels are refinable, and second, the compatibility of linear fixpoint equations with bisimulations. These equations can be used in an algebraic setting for a certain class of optimality problems. Since bisimulations can simplify the complexity of models, they can also reduce the complexity of certain optimality problems.


Model Check Adjacency Matrix Target Model Target Distance Short Path Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press (2008)Google Scholar
  2. 2.
    Ciarlet, P.G.: Introduction to Numerical Linear Algebra and Optimisation. Cambridge University Press (1989)Google Scholar
  3. 3.
    Glück, R.: Using Bisimulations for Optimality Problems in Model Refinement. In: de Swart, H. (ed.) RAMICS 2011. LNCS, vol. 6663, pp. 164–179. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Glück, R., Möller, B., Sintzoff, M.: Model Refinement Using Bisimulation Quotients. In: Johnson, M., Pavlovic, D. (eds.) AMAST 2010. LNCS, vol. 6486, pp. 76–91. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Gondran, M., Minoux, M.: Graphs, Dioids and Semirings. Springer (2008)Google Scholar
  6. 6.
    Gurney, A.J.T., Griffin, T.G.: Pathfinding through Congruences. In: de Swart, H. (ed.) RAMICS 2011. LNCS, vol. 6663, pp. 180–195. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Kleene, S.: Introduction to Metamathematics. Wolters-Noordhoff - Groningen (1952)Google Scholar
  8. 8.
    Myhill, J.: Finite automata and the representation of events. WADD TR-57-624, pp. 112–137 (1957)Google Scholar
  9. 9.
    Nerode, A.: Linear automaton transformations. Proceedings of the American Mathematical Society 9(4), 541–544 (1958)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Paige, R., Tarjan, R.: Three partition refinement algorithms. SIAM Journal for Computing 16(6), 973–989 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Schmidt, G., Ströhlein, T.: Relations and Graphs: Discrete Mathematics for Computer Scientists. Springer (1993)Google Scholar
  12. 12.
    Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of Mathematics 5(2), 285–309 (1955)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Winter, M.: A relation-algebraic theory of bisimulations. Fundam. Inf. 83(4), 429–449 (2008)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Roland Glück
    • 1
  1. 1.Institut für InformatikUniversität AugsburgAugsburgGermany

Personalised recommendations