Advertisement

Finding Dense Subgraphs of Sparse Graphs

  • Christian Komusiewicz
  • Manuel Sorge
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7535)

Abstract

We investigate the computational complexity of the Densest- k -Subgraph (D k S) problem, where the input is an undirected graph G = (V,E) and one wants to find a subgraph on exactly k vertices with a maximum number of edges. We extend previous work on D k S by studying its parameterized complexity. On the positive side, we show that, when fixing some constant minimum density μ of the sought subgraph, D k S becomes fixed-parameter tractable with respect to either of the parameters maximum degree and h-index of G. Furthermore, we obtain a fixed-parameter algorithm for D k S with respect to the combined parameter “degeneracy of G and |V| − k”. On the negative side, we find that D k S is W[1]-hard with respect to the combined parameter “solution size k and degeneracy of G”. We furthermore strengthen a previous hardness result for D k S [Cai, Comput. J., 2008] by showing that for every fixed μ, 0 < μ < 1, the problem of deciding whether G contains a subgraph of density at least μ is W[1]-hard with respect to the parameter |V| − k.

Keywords

Maximum Degree Input Graph Sparse Graph Enumeration Algorithm Combine Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42(4), 844–856 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Amini, O., Sau, I., Saurabh, S.: Parameterized Complexity of the Smallest Degree-Constrained Subgraph Problem. In: Grohe, M., Niedermeier, R. (eds.) IWPEC 2008. LNCS, vol. 5018, pp. 13–29. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Balasundaram, B., Butenko, S., Hicks, I.V.: Clique relaxations in social network analysis: The maximum k-plex problem. Oper. Res. 59(1), 133–142 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Cross-composition: A new technique for kernelization lower bounds. In: Proc. 28th STACS. LIPIcs, vol. 9, pp. 165–176. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2011)Google Scholar
  5. 5.
    Cai, L.: Parameterized complexity of cardinality constrained optimization problems. Comput. J. 51(1), 102–121 (2008)CrossRefGoogle Scholar
  6. 6.
    Cai, L., Chan, S.M., Chan, S.O.: Random Separation: A New Method for Solving Fixed-Cardinality Optimization Problems. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 239–250. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer (1999)Google Scholar
  8. 8.
    Eppstein, D., Spiro, E.S.: The h-Index of a Graph and Its Application to Dynamic Subgraph Statistics. In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth, C.D. (eds.) WADS 2009. LNCS, vol. 5664, pp. 278–289. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Eppstein, D., Löffler, M., Strash, D.: Listing All Maximal Cliques in Sparse Graphs in Near-Optimal Time. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010, Part I. LNCS, vol. 6506, pp. 403–414. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Feige, U., Seltser, M.: On the densest k-subgraph problem. Technical report, The Weizmann Institute, Department of Applied Math. and Computer Science (1997)Google Scholar
  11. 11.
    Feige, U., Peleg, D., Kortsarz, G.: The dense k-subgraph problem. Algorithmica 29(3), 410–421 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Gallo, G., Grigoriadis, M.D., Tarjan, R.E.: A fast parametric maximum flow algorithm and applications. SIAM J. Comput. 18(1), 30–55 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Holzapfel, K., Kosub, S., Maaß, M.G., Täubig, H.: The complexity of detecting fixed-density clusters. Discrete Appl. Math. 154(11), 1547–1562 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Khuller, S., Saha, B.: On Finding Dense Subgraphs. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 597–608. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  16. 16.
    Komusiewicz, C.: Parameterized Algorithmics for Network Analysis: Clustering & Querying. PhD thesis, Technische Universität Berlin, Berlin, Germany (2011)Google Scholar
  17. 17.
    Kosub, S.: Local Density. In: Brandes, U., Erlebach, T. (eds.) Network Analysis. LNCS, vol. 3418, pp. 112–142. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Lokshtanov, D., Marx, D., Saurabh, S.: Lower bounds based on the exponential time hypothesis. Bulletin of the EATCS 105, 41–72 (2011)MathSciNetGoogle Scholar
  19. 19.
    Saha, B., Hoch, A., Khuller, S., Raschid, L., Zhang, X.-N.: Dense Subgraphs with Restrictions and Applications to Gene Annotation Graphs. In: Berger, B. (ed.) RECOMB 2010. LNCS, vol. 6044, pp. 456–472. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Christian Komusiewicz
    • 1
  • Manuel Sorge
    • 1
  1. 1.Institut für Softwaretechnik und Theoretische InformatikTU BerlinGermany

Personalised recommendations