Parameterized Algorithmics and Computational Experiments for Finding 2-Clubs

  • Sepp Hartung
  • Christian Komusiewicz
  • André Nichterlein
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7535)

Abstract

Given an undirected graph G = (V,E) and an integer ℓ ≥ 1, the NP-hard 2-Club problem asks for a vertex set S ⊆ V of size at least ℓ such that the subgraph induced by S has diameter at most two. In this work, we extend previous parameterized complexity studies for 2-Club. On the positive side, we give polynomial kernels for the parameters “feedback edge set size of G” and “size of a cluster editing set of G” and present a direct combinatorial algorithm for the parameter “treewidth of G”. On the negative side, we first show that unless NP ⊆ coNP/poly, 2-Club does not admit a polynomial kernel with respect to the “size of a vertex cover of G”. Next, we show that, under the strong exponential time hypothesis, a previous O *(2|V| − ℓ) search tree algorithm [Schäfer et al., Optim. Lett. 2012] cannot be improved and that, unless NP ⊆ coNP/poly, there is no polynomial kernel for the dual parameter |V| − ℓ. Finally, we show that, in spite of this lower bound, the search tree algorithm for the dual parameter |V| − ℓ can be tuned into an efficient exact algorithm for 2-Club that substantially outperforms previous implementations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alba, R.: A graph-theoretic definition of a sociometric clique. J. Math. Sociol. 3(1), 113–126 (1973)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Asahiro, Y., Miyano, E., Samizo, K.: Approximating Maximum Diameter-Bounded Subgraphs. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 615–626. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Balasundaram, B., Butenko, S., Trukhanovzu, S.: Novel approaches for analyzing biological networks. J. Comb. Optim. 10(1), 23–39 (2005)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Bodlaender, H.L., Thomassé, S., Yeo, A.: Kernel bounds for disjoint cycles and disjoint paths. Theor. Comput. Sci. 412(35), 4570–4578 (2011)MATHCrossRefGoogle Scholar
  5. 5.
    Bourjolly, J.-M., Laporte, G., Pesant, G.: An exact algorithm for the maximum k-club problem in an undirected graph. European J. Oper. Res. 138(1), 21–28 (2002)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Chang, M.S., Hung, L.J., Lin, C.R., Su, P.C.: Finding large k-clubs in undirected graphs. In: Proc. 28th Workshop on Combinatorial Mathematics and Computation Theory (2011)Google Scholar
  7. 7.
    Chen, Y., Flum, J., Müller, M.: Lower bounds for kernelizations and other preprocessing procedures. Theory Comput. Syst. 48(4), 803–839 (2011)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    DIMACS. Graph partitioning and graph clustering (2012), http://www.cc.gatech.edu/dimacs10/ (accessed April 2012)
  9. 9.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer (1999)Google Scholar
  10. 10.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer (2006)Google Scholar
  11. 11.
    Gendreau, M., Soriano, P., Salvail, L.: Solving the maximum clique problem using a tabu search approach. Ann. Oper. Res. 41(4), 385–403 (1993)MATHCrossRefGoogle Scholar
  12. 12.
    Hartung, S., Komusiewicz, C., Nichterlein, A.: On structural parameterizations for the 2-club problem (manuscript, June 2012) Google Scholar
  13. 13.
    Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? J. Comput. System Sci. 63(4), 512–530 (2001)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Lokshtanov, D., Marx, D., Saurabh, S.: Lower bounds based on the exponential time hypothesis. Bulletin of the EATCS 105, 41–72 (2011)MathSciNetGoogle Scholar
  15. 15.
    Mahdavi, F., Balasundaram, B.: On inclusionwise maximal and maximum cardinality k-clubs in graphs. Discrete Optim. (to appear, 2012)Google Scholar
  16. 16.
    Memon, N., Larsen, H.L.: Structural Analysis and Mathematical Methods for Destabilizing Terrorist Networks Using Investigative Data Mining. In: Li, X., Zaïane, O.R., Li, Z.-h. (eds.) ADMA 2006. LNCS (LNAI), vol. 4093, pp. 1037–1048. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Mokken, R.J.: Cliques, Clubs and Clans. Quality and Quantity 13, 161–173 (1979)CrossRefGoogle Scholar
  18. 18.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press (2006)Google Scholar
  19. 19.
    Pasupuleti, S.: Detection of Protein Complexes in Protein Interaction Networks Using n-Clubs. In: Marchiori, E., Moore, J.H. (eds.) EvoBIO 2008. LNCS, vol. 4973, pp. 153–164. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    Schäfer, A., Komusiewicz, C., Moser, H., Niedermeier, R.: Parameterized computational complexity of finding small-diameter subgraphs. Optim. Lett. 6(5) (2012)Google Scholar
  21. 21.
    Schäfer, A.: Exact algorithms for s-club finding and related problems. Diploma thesis, Friedrich-Schiller-Universität Jena (2009)Google Scholar
  22. 22.
    Seidman, S.B., Foster, B.L.: A graph-theoretic generalization of the clique concept. J. Math. Sociol. 6, 139–154 (1978)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Sepp Hartung
    • 1
  • Christian Komusiewicz
    • 1
  • André Nichterlein
    • 1
  1. 1.Institut für Softwaretechnik und Theoretische InformatikTU BerlinBerlinGermany

Personalised recommendations