On Tractable Parameterizations of Graph Isomorphism

  • Adam Bouland
  • Anuj Dawar
  • Eryk Kopczyński
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7535)

Abstract

The fixed-parameter tractability of graph isomorphism is an open problem with respect to a number of natural parameters, such as tree-width, genus and maximum degree. We show that graph isomorphism is fixed-parameter tractable when parameterized by the tree-depth of the graph. We also extend this result to a parameter generalizing both tree-depth and max-leaf-number by deploying new variants of cops-and-robbers games.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arvind, V., Das, B., Johannes, K., Toda, S.: Colored Hypergraph Isomorphism is Fixed Parameter Tractable. In: ECCC 93 (2009)Google Scholar
  2. 2.
    Babai, L.: Monte-Carlo algorithms in graph isomorphism testing. Tech. Rep. DMS 79-10, Université de Montréal, pp. 1–33 (1979)Google Scholar
  3. 3.
    Bodlaender, H., Hafsteinsson, H., Gilbert, J.R., Kloks, T.: Approximating treewidth, pathwidth, frontsize, and shortest elimination tree. J. Algorithms 18, 238–255 (1995)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Bodlaender, H.L.: Polynomial Algorithms for Graph lsomorphism Chromatic Index on Partial k-Trees. Journal of Algorithms 11(4), 631–643 (1990)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Cai, J.-Y., Fürer, M., Immerman, N.: An Optimal Lower Bound on the Number of Variables for Graph Identification. Combinatorica 12(4), 389–410 (1992)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Dvořák, Z., Giannopoulou, A., Thilikos, D.M.: Forbidden graphs for tree-depth. European Journal of Combinatorics 33(5), 969–979 (2012)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Elberfeld, M., Grohe, M.: Where First-Order and Monadic Second-Order Logic Coincide. Arxiv preprint arXiv:1204.6291, pp. 1–15 (2012)Google Scholar
  8. 8.
    Evdokimov, S., Ponomarenko, I.: Isomorphism of Coloured Graphs with Slowly Increasing Multiplicity of Jordan Blocks. Combinatorica 19(3), 321–333 (1999)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Fellows, M., Lokshtanov, D., Misra, N., Mnich, M., Rosamond, F., Saurabh, S.: The Complexity Ecology of Parameters: An Illustration Using Bounded Max Leaf Number. Theory of Computing Systems 45(4), 822–848 (2009)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Furst, M., Hopcroft, J.: Luks: Polynomial-time algorithms for permutation groups. In: Proc. FOCS 1980, pp. 36–41 (1980)Google Scholar
  11. 11.
    Ganian, R., Hliněný, P., Kneis, J., Langer, A., Obdržálek, J., Rossmanith, P.: On Digraph Width Measures in Parameterized Algorithmics. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 185–197. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Giannopoulou, A., Hunter, P., Thilikos, D.: LIFO-search: A min-max theorem and a searching game for cycle-rank and tree-depth. Submitted to J. Discrete Math. (2011)Google Scholar
  13. 13.
    Grohe, M., Marx, D.: Structure Theorem and Isomorphism Test for Graphs with Excluded Topological Subgraphs. In: Proc. STOC 2012, pp. 173–192 (2012)Google Scholar
  14. 14.
    Grohe, M.: Fixed-point definability and polynomial time on graphs with excluded minors. In: Proc. LICS 2010, pp. 179–188 (2010)Google Scholar
  15. 15.
    Heath, M., Ng, E., Peyton, B.: Parallel algorithms for sparse linear systems. SIAM Review 33(3), 420–460 (1991)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Kleitman, D., West, D.: Spanning Trees with Many Leaves. SIAM J. Discrete Math. 4, 99–106 (1991)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Kratsch, S., Schweitzer, P.: Isomorphism for Graphs of Bounded Feedback Vertex Set Number. In: Kaplan, H. (ed.) SWAT 2010. LNCS, vol. 6139, pp. 81–92. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Lindell, S.: A logspace algorithm for tree canonization. In: Proc. STOC 1992, pp. 400–404 (1992)Google Scholar
  19. 19.
    Lovász, L.: Graph minor theory. Bulletin of the AMS 43(1), 75–86 (2006)MATHCrossRefGoogle Scholar
  20. 20.
    Luks, E.: Isomorphism of graphs of bounded valence can be tested in polynomial time. Journal of Computer and System Sciences (1982)Google Scholar
  21. 21.
    Manne, F.: An Algorithm for Computing an Elimination Tree of Minimum Height for a Tree. Tech. Rep. CS-91-59, University of Bergen, Norway (1992)Google Scholar
  22. 22.
    Miller, G.: Isomorphism testing for graphs of bounded genus. In: Proc. STOC 1980, pp. 225–235 (1980)Google Scholar
  23. 23.
    Nešetřil, J., Ossona de Mendez, P.: Sparsity: Graphs, Structures and Algorithms. Algorithms and Combinatorics, vol. 28. Springer (2012)Google Scholar
  24. 24.
    Nešetřil, J., Ossona de Mendez, P.: Tree-depth, subgraph coloring and homomorphism bounds. European Journal of Combinatorics 27(6), 1022–1041 (2006)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Ponomarenko, I.: The isomorphism problem for classes of graphs that are invariant with respect to contraction. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI) 174, 147–177 (1988) (Russian)Google Scholar
  26. 26.
    Robertson, N., Seymour, P.: Graph minors XX. Wagners conjecture. Journal of Combinatorial Theory, Series B 92, 325–357 (2004)MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Toda, S.: Computing automorphism groups of chordal graphs whose simplicial components are of small size. IEICE Transactions on Information and Systems E89-D(8), 2388–2401 (2006)CrossRefGoogle Scholar
  28. 28.
    Yamazaki, K., Bodlaender, H.L., de Fluiter, B., Thilikos, D.M.: Isomorphism for Graphs of Bounded Distance Width. Algorithmica 24(2), 105–127 (1999)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Adam Bouland
    • 1
  • Anuj Dawar
    • 2
  • Eryk Kopczyński
    • 3
  1. 1.Massachusetts Institute of TechnologyCambridgeUSA
  2. 2.University of CambridgeCambridgeUK
  3. 3.University of WarsawWarsawPoland

Personalised recommendations