Fast Monotone Summation over Disjoint Sets

  • Petteri Kaski
  • Mikko Koivisto
  • Janne H. Korhonen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7535)


We study the problem of computing an ensemble of multiple sums where the summands in each sum are indexed by subsets of size p of an n-element ground set. More precisely, the task is to compute, for each subset of size q of the ground set, the sum over the values of all subsets of size p that are disjoint from the subset of size q. We present an arithmetic circuit that, without subtraction, solves the problem using O((n p  + n q )logn) arithmetic gates, all monotone; for constant p, q this is within the factor logn of the optimal. The circuit design is based on viewing the summation as a “set nucleation” task and using a tree-projection approach to implement the nucleation. Applications include improved algorithms for counting heaviest k-paths in a weighted graph, computing permanents of rectangular matrices, and dynamic feature selection in machine learning.


Binary String Commutative Semigroup Arithmetic Circuit Empty String Annual IEEE Symposium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alon, N., Yuster, R., Zwick, U.: Finding and counting given length cycles. Algorithmica 17(3), 209–223 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Bellman, R.: Combinatorial processes and dynamic programming. In: Combinatorial Analysis. Proceedings of Symposia in Applied Mathematics, vol. 10, pp. 217–249. ACM (1960)Google Scholar
  3. 3.
    Bellman, R.: Dynamic programming treatment of the travelling salesman problem. J. ACM 9(1), 61–63 (1962)zbMATHCrossRefGoogle Scholar
  4. 4.
    Björklund, A.: Determinant sums for undirected Hamiltonicity. In: 51st Annual IEEE Symposium on Foundations of Computer Science (FOCS 2010), pp. 173–182. IEEE Computer Society, Los Alamitos (2010)CrossRefGoogle Scholar
  5. 5.
    Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Fourier meets möbius: fast subset convolution (manuscript submitted for publication)Google Scholar
  6. 6.
    Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Computing the Tutte polynomial in vertex-exponential time. In: 49th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2008), pp. 677–686. IEEE Computer Society, Los Alamitos (2008)CrossRefGoogle Scholar
  7. 7.
    Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Counting Paths and Packings in Halves. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 578–586. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Evaluation of permanents in rings and semirings. Information Processing Letters 110(20), 867–870 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Björklund, A., Husfeldt, T., Koivisto, M.: Set partitioning via inclusion-exclusion. SIAM Journal on Computing 39(2), 546–563 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    de Campos, C.P., Ji, Q.: Efficient structure learning of bayesian networks using constraints. Journal of Machine Learning Research 12, 663–689 (2011)Google Scholar
  11. 11.
    Cohn, H., Kleinberg, R., Szegedy, B., Umans, C.: Group-theoretic algorithms for matrix multiplication. In: 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2005), pp. 379–388. IEEE Computer Society, Los Alamitos (2005)CrossRefGoogle Scholar
  12. 12.
    Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex Fourier series. Mathematics of Computation 19, 297–301 (1965)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. Journal of Symbolic Computation 9(3), 251–280 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Cygan, M., Nederlof, J., Pilipczuk, M., Pilipczuk, M., van Rooij, J.M.M., Wojtaszczyk, J.O.: Solving connectivity problems parameterized by treewidth in single exponential time (2011) (manuscript)Google Scholar
  15. 15.
    Garey, M.R., Johnson, D.S.: Computers and Intractability, A Guide to the Theory of NP-Completeness. W.H. Freeman and Company (1979)Google Scholar
  16. 16.
    Held, M., Karp, R.M.: A dynamic programming approach to sequencing problems. Journal of the Society for Industrial and Applied Mathematics 10(1), 196–210 (1962)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Itai, A., Rodeh, M.: Finding a minimum circuit in a graph. SIAM Journal on Computing 7(4), 413–423 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Kerr, L.R.: The effect of algebraic structure on the computational complexity of matrix multiplications. Ph.D. thesis, Cornell University (1970)Google Scholar
  19. 19.
    Knuth, D.E.: The Art of Computer Programming, 3rd edn. Seminumerical Algorithms, vol. 2. Addison–Wesley, Upper Saddle River (1998)Google Scholar
  20. 20.
    Koutis, I., Williams, R.: Limits and Applications of Group Algebras for Parameterized Problems. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 653–664. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  21. 21.
    Lokshtanov, D., Nederlof, J.: Saving space by algebraization. In: 2010 ACM International Symposium on Theory of Computing (STOC 2010), pp. 321–330. ACM, New York (2010)Google Scholar
  22. 22.
    Valiant, L.G.: Negation is powerless for boolean slice functions. SIAM Journal on Computing 15, 531–535 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Vassilevska, V., Williams, R.: Finding, minimizing, and counting weighted subgraphs. In: 2009 ACM International Symposium on Theory of Computing (STOC 2009), pp. 455–464. ACM, New York (2009)Google Scholar
  24. 24.
    Vassilevska, V., Williams, R., Yuster, R.: Finding heaviest H-subgraphs in real weighted graphs, with applications. ACM Transactions on Algorithms 6(3), Art. 44, 23 (2010)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Williams, R.: Finding paths of length k in O *(2k) time. Information Processing Letters 109(6), 315–318 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Yates, F.: The Design and Analysis of Factorial Experiments. Imperial Bureau of Soil Science, Harpenden, England (1937)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Petteri Kaski
    • 1
  • Mikko Koivisto
    • 2
  • Janne H. Korhonen
    • 2
  1. 1.Helsinki Institute for Information Technology HIIT & Department of Information and Computer ScienceAalto UniversityFinland
  2. 2.Helsinki Institute for Information Technology HIIT & Department of Computer ScienceUniversity of HelsinkiFinland

Personalised recommendations