An Exact Algorithm for Subset Feedback Vertex Set on Chordal Graphs

  • Petr A. Golovach
  • Pinar Heggernes
  • Dieter Kratsch
  • Reza Saei
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7535)


Given a graph G = (V,E) and a set S ⊆ V, a set U ⊆ V is a subset feedback vertex set of (G,S) if no cycle in G[V ∖ U] contains a vertex of S. The Subset Feedback Vertex Set problem takes as input G, S, and an integer k, and the question is whether (G,S) has a subset feedback vertex set of cardinality or weight at most k. Both the weighted and the unweighted versions of this problem are NP-complete on chordal graphs, even on their subclass split graphs. We give an algorithm with running time O(1.6708 n ) that enumerates all minimal subset feedback vertex sets on chordal graphs with n vertices. As a consequence, Subset Feedback Vertex Set can be solved in time O(1.6708 n ) on chordal graphs, both in the weighted and in the unweighted case. On arbitrary graphs, the fastest known algorithm for the problems has O(1.8638 n ) running time.


Exact Algorithm Chordal Graph Reduction Rule Graph Class Split Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Corneil, D.G., Fonlupt, J.: The complexity of generalized clique covering. Disc. Appl. Math. 22, 109–118 (1988/1989)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Couturier, J.-F., Heggernes, P., van’t Hof, P., Villanger, Y.: Maximum number of minimal feedback vertex sets in chordal graphs and cographs. In: Proceedings. of COCOON 2012. LNCS (to appear, 2012)Google Scholar
  3. 3.
    Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: Subset Feedback Vertex Set Is Fixed-Parameter Tractable. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 449–461. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Even, G., Naor, J., Zosin, L.: An 8-approximation algorithm for the subset feedback vertex set problem. SIAM J. Comput. 30(4), 1231–1252 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Fomin, F.V., Gaspers, S., Pyatkin, A.V., Razgon, I.: On the minimum feedback vertex set problem: Exact and enumeration algorithms. Algorithmica 52(2), 293–307 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Fomin, F.V., Grandoni, F., Pyatkin, A.V., Stepanov, A.A.: Combinatorial bounds via measure and conquer: Bounding minimal dominating sets and applications. ACM Trans. Algorithms 5(1) (2008)Google Scholar
  7. 7.
    Fomin, F.V., Heggernes, P., Kratsch, D., Papadopoulos, C., Villanger, Y.: Enumerating Minimal Subset Feedback Vertex Sets. In: Dehne, F., Iacono, J., Sack, J.-R. (eds.) WADS 2011. LNCS, vol. 6844, pp. 399–410. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Texts in Theoretical Computer Science. Springer (2010)Google Scholar
  9. 9.
    Fomin, F.V., Villanger, Y.: Finding induced subgraphs via minimal triangulations. In: Proceedings of STACS 2010, pp. 383–394 (2010)Google Scholar
  10. 10.
    George, J.A., Liu, J.W.H.: Computer Solution of Large Sparse Positive Definite Systems. Prentice-Hall Inc. (1981)Google Scholar
  11. 11.
    Garey, M.R., Johnson, D.S.: Computers and Intractability. Freeman and Co. (1978)Google Scholar
  12. 12.
    Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Annals of Disc. Math. 57 (2004)Google Scholar
  13. 13.
    Gaspers, S., Mnich, M.: Feedback Vertex Sets in Tournaments. In: de Berg, M., Meyer, U. (eds.) ESA 2010, Part I. LNCS, vol. 6346, pp. 267–277. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Kanté, M.M., Limouzy, V., Mary, A., Nourine, L.: Enumeration of Minimal Dominating Sets and Variants. In: Owe, O., Steffen, M., Telle, J.A. (eds.) FCT 2011. LNCS, vol. 6914, pp. 298–309. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Kratsch, D., Müller, H., Todinca, I.: Feedback vertex set on AT-free graphs. Disc. Appl. Math. 156, 1936–1947 (2008)zbMATHCrossRefGoogle Scholar
  16. 16.
    Moon, J.W., Moser, L.: On cliques in graphs. Israel J. Math. 3, 23–28 (1965)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Schwikowski, B., Speckenmeyer, E.: On enumerating all minimal solutions of feedback problems. Disc. Appl. Math. 117, 253–265 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Semple, C., Steel, M.: Phylogenetics. Oxford lecture series in mathematics and its applications (2003)Google Scholar
  19. 19.
    Spinrad, J.P.: Efficient graph representations. Fields Institute Monograph Series, vol. 19. AMS (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Petr A. Golovach
    • 1
  • Pinar Heggernes
    • 1
  • Dieter Kratsch
    • 2
  • Reza Saei
    • 1
  1. 1.Department of InformaticsUniversity of BergenNorway
  2. 2.LITA, Université de Lorraine - MetzFrance

Personalised recommendations