Online Recommender System for Radio Station Hosting

  • Dmitry I. Ignatov
  • Andrey V. Konstantinov
  • Sergey I. Nikolenko
  • Jonas Poelmans
  • Vasily V. Zaharchuk
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 128)


We describe a new recommender system for the Russian interactive radio network FMhost. The underlying model combines collaborative and user-based approaches. The system extracts information from tags of listened tracks for matching user and radio station profiles and follows an adaptive online learning strategy based on user history. We also provide some basic examples and describe the quality of service evaluation methodology.


music recommender systems interactive radio network e-commerce quality of service 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Klapuri, A., Leider, C. (eds.): Proceedings of the 12th International Society for Music Information Retrieval Conference, ISMIR 2011, Miami, Florida, USA, October 24-28. University of Miami (2011)Google Scholar
  2. 2.
    Anglade, A., Baccigalupo, C., Casagrande, N., Celma, Ò., Lamere, P.: Workshop report: Womrad 2010. In: Amatriain, X., Torrens, M., Resnick, P., Zanker, M. (eds.) RecSys, pp. 381–382. ACM (2010)Google Scholar
  3. 3.
    Anglade, A., Celma, O., Fields, B., Lamere, P., McFee, B.: Womrad: 2nd workshop on music recommendation and discovery. In: Proceedings of the Fifth ACM Conference on Recommender Systems, RecSys 2011, pp. 381–382. ACM, New York (2011)CrossRefGoogle Scholar
  4. 4.
    RecSys 2011: Proceedings of the Fifth ACM Conference on Recommender Systems, 609116. ACM, New York (2011)Google Scholar
  5. 5.
    Hilliges, O., Holzer, P., Klüber, R., Butz, A.: AudioRadar: A Metaphorical Visualization for the Navigation of Large Music Collections. In: Butz, A., Fisher, B., Krüger, A., Olivier, P. (eds.) SG 2006. LNCS, vol. 4073, pp. 82–92. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Gleich, D.F., Rasmussen, M., Lang, K., Zhukov, L.: The world of music: User ratings; spectral and spherical embeddings; map projections. Online report (2006)Google Scholar
  7. 7.
    Gleich, D.F., Zhukov, L., Rasmussen, M., Lang, K.: The World of Music: SDP Embedding of High Dimensional data. In: Information Visualization 2005 (2005), Interactive PosterGoogle Scholar
  8. 8.
    Brandenburg, K., Dittmar, C., Gruhne, M., Abeßer, J., Lukashevich, H., Dunker, P., Gärtner, D., Wolter, K., Grossmann, H.: Music search and recommendation. In: Furht, B. (ed.) Handbook of Multimedia for Digital Entertainment and Arts, pp. 349–384. Springer US (2009)Google Scholar
  9. 9.
    Celma, Ò.: Music Recommendation and Discovery - The Long Tail, Long Fail, and Long Play in the Digital Music Space. Springer (2010)Google Scholar
  10. 10.
    Avesani, P., Massa, P., Nori, M., Susi, A.: Collaborative Radio Community. In: De Bra, P., Brusilovsky, P., Conejo, R. (eds.) AH 2002. LNCS, vol. 2347, pp. 462–465. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Symeonidis, P., Ruxanda, M.M., Nanopoulos, A., Manolopoulos, Y.: Ternary semantic analysis of social tags for personalized music recommendation. In: Bello, J.P., Chew, E., Turnbull, D. (eds.) ISMIR, pp. 219–224 (2008)Google Scholar
  12. 12.
    Nanopoulos, A., Rafailidis, D., Symeonidis, P., Manolopoulos, Y.: Musicbox: Personalized music recommendation based on cubic analysis of social tags. IEEE Transactions on Audio, Speech & Language Processing 18(2), 407–412 (2010)CrossRefGoogle Scholar
  13. 13.
    Koenigstein, N., Dror, G., Koren, Y.: Yahoo! music recommendations: modeling music ratings with temporal dynamics and item taxonomy. In: Proceedings of the Fifth ACM Conference on Recommender Systems, RecSys 2011, pp. 165–172. ACM, New York (2011)CrossRefGoogle Scholar
  14. 14.
    Celma, O., Lamere, P.: Music recommendation and discovery revisited. In: Proceedings of the Fifth ACM Conference on Recommender Systems, RecSys 2011, pp. 7–8. ACM, New York (2011)CrossRefGoogle Scholar
  15. 15.
    Hu, Y., Ogihara, M.: Nextone player: A music recommendation system based on user behavior. In: [1], pp. 103–108Google Scholar
  16. 16.
    Bogdanov, D., Herrera, P.: How much metadata do we need in music recommendation? a subjective evaluation using preference sets. In: [1], pp. 97–102Google Scholar
  17. 17.
    Mesnage, C.S., Rafiq, A., Dixon, S., Brixtel, R.P.: Music discovery with social networks. In: Workshop on Music Recommendation and Discovery 2011, pp. 1–6 (October 2011)Google Scholar
  18. 18.
    Barthet, M., Anglade, A., Fazekas, G., Kolozali, S., Macrae, R.: Music recommendation for music learning: Hotttabs, a multimedia guitar tutor. In: Workshop on Music Recommendation and Discovery 2011, pp. 7–13 (October 2011)Google Scholar
  19. 19.
    Tatlı, I., Birturk, A.: Using semantic relations in context-based music recommendations. In: Workshop on Music Recommendation and Discovery 2011, pp. 14–17 (October 2011)Google Scholar
  20. 20.
    Knees, P., Schedl, M.: Towards semantic music information extraction from the web using rule patterns and supervised learning. In: Workshop on Music Recommendation and Discovery 2011, pp. 18–25 (October 2011)Google Scholar
  21. 21.
    Knopke, I.: The importance of service and genre in recommendations for online radio and television programmes. In: Workshop on Music Recommendation and Discovery 2011, pp. 26–29 (October 2011)Google Scholar
  22. 22.
    Popescu, G., Pu, P.: Probabilistic game theoretic algorithms for group recommender systems. In: Workshop on Music Recommendation and Discovery 2011, pp. 7–12 (October 2011)Google Scholar
  23. 23.
    Ignatov, D.I., Poelmans, J., Zaharchuk, V.: Recommender System Based on Algorithm of Bicluster Analysis RecBi. In: Ignatov, D., Poelmans, J., Kuznetsov, S. (eds.) CDUD 2011 - Concept Discovery in Unstructured Data. CEUR Workshop proceedings, vol. 757, pp. 122–126 (2011)Google Scholar
  24. 24.
    Ignatov, D.I., Kuznetsov, S.O.: Concept-based Recommendations for Internet Advertisement. In: Belohlavek, R., Kuznetsov, S.O. (eds.) Proc. CLA 2008. CEUR WS, vol. 433, pp. 157–166. Palacký University, Olomouc (2008)Google Scholar
  25. 25.
    Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations, 1st edn. Springer-Verlag New York, Inc., Secaucus (1999)CrossRefGoogle Scholar
  26. 26.
    Edwards, W., Barron, F.: SMARTS and SMARTER: Improved Simple Methods for Multiattribute Utility Measurement. Organizational Behavior and Human Decision Processes 60(3), 306–325 (1994)CrossRefGoogle Scholar
  27. 27.
    Ignatov, D.I., Poelmans, J., Dedene, G., Viaene, S.: A New Cross-Validation Technique to Evaluate Quality of Recommender Systems. In: Kundu, M.K., Mitra, S., Mazumdar, D., Pal, S.K. (eds.) PerMIn 2012. LNCS, vol. 7143, pp. 195–202. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  28. 28.
    Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-law distributions in empirical data. SIAM Rev. 51(4), 661–703 (2009)CrossRefGoogle Scholar
  29. 29.
    Vander Wal, T.: Folksonomy Coinage and Definition (2007), (accessed on March 12, 2012)
  30. 30.
    Ignatov, D.I., Kuznetsov, S.O., Magizov, R.A., Zhukov, L.E.: From Triconcepts to Triclusters. In: Kuznetsov, S.O., Ślęzak, D., Hepting, D.H., Mirkin, B.G. (eds.) RSFDGrC 2011. LNCS, vol. 6743, pp. 257–264. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Dmitry I. Ignatov
    • 1
  • Andrey V. Konstantinov
    • 1
  • Sergey I. Nikolenko
    • 2
    • 3
  • Jonas Poelmans
    • 1
  • Vasily V. Zaharchuk
    • 1
  1. 1.Higher School of EconomicsNational Research UniversityRussia
  2. 2.Steklov Mathematical InstituteSt. PetersburgRussia
  3. 3.St. Petersburg Academic UniversitySt. PetersburgRussia

Personalised recommendations