Disparity Confidence Measures on Engineered and Outdoor Data

  • Ralf Haeusler
  • Reinhard Klette
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7441)

Abstract

Confidence measures for stereo analysis are not yet a subject of detailed comparative evaluations. There have been some studies, but still insufficient for estimating the performance of these measures. We comparatively discuss confidence measures whose performance appeared to be ‘promising’ to us, by evaluating their performance on commonly used stereo test data. Those data are either engineered and come with accurate ground truth (for disparities), or they are recorded outdoors and come with approximate ground truth. The performance of confidence measures varies widely between these two types of data. We propose modifications of confidence measures which can improve their performance on outdoor data.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Banks, J., Corke, P.I.: Quantitative evaluation of matching methods and validity measures for stereo vision. Int. J. Robotic Research 20, 512–532 (2001)CrossRefGoogle Scholar
  2. 2.
    EISATS (.enpeda.. image sequence analysis test site): The University of Auckland, www.mi.auckland.ac.nz/EISATS (last visit: February 13, 2012)
  3. 3.
    Egnal, G.: Mutual information as a stereo correspondence measure. Computer and Information Science, University of Pennsylvania, Philadelphia, Tech. Rep. MS-CIS-00-20 (2000)Google Scholar
  4. 4.
    Haeusler, R., Klette, R.: Evaluation of Stereo Confidence Measures on Synthetic and Recorded Image Data. In: Proc. IEEE ICIEV (to appear, 2012)Google Scholar
  5. 5.
    Hirschmüller, H.: Stereo processing by semiglobal matching and mutual information. IEEE Trans. Pattern Analysis Machine Intelligence 30, 328–341 (2008)CrossRefGoogle Scholar
  6. 6.
    Hirschmüller, H., Scharstein, D.: Evaluation of cost functions for stereo matching. In: Proc. CVPR, pp. 1–8 (2007)Google Scholar
  7. 7.
    Hu, X., Mordohai, P.: A quantitative evaluation of confidence measures for stereo vision. In: IEEE Trans. Pattern Analysis Machine Intelligence (2012), doi:10.1109/TPAMI.2012.46Google Scholar
  8. 8.
    Klette, R., Krüger, N., Vaudrey, T., Pauwels, K., van Hulle, M., Morales, S., Kandil, F., Haeusler, R., Pugeault, N., Rabe, C., Lappe, M.: Performance of correspondence algorithms in vision-based driver assistance using an online image sequence database. IEEE Trans. Vehicular Technology 60, 2012–2026 (2011)CrossRefGoogle Scholar
  9. 9.
    Merrell, P., Akbarzadeh, A., Wang, L., Mordohai, P., Frahm, J.-M., Yang, R., Nister, D., Pollefeys, M.: Real-time visibility-based fusion of depth maps. In: Proc. ICCV, pp. 1–8 (2007)Google Scholar
  10. 10.
    Morales, S., Klette, R.: A Third Eye for Performance Evaluation in Stereo Sequence Analysis. In: Jiang, X., Petkov, N. (eds.) CAIP 2009. LNCS, vol. 5702, pp. 1078–1086. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Morales, S., Klette, R.: Ground Truth Evaluation of Stereo Algorithms for Real World Applications. In: Koch, R., Huang, F. (eds.) ACCV Workshops 2010, Part II. LNCS, vol. 6469, pp. 152–162. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Scharstein, D., Pal, C.: Learning conditional random fields for stereo. In: Proc. CVPR, pp. 1–8 (2007)Google Scholar
  13. 13.
    Scharstein, D., Szeliski, R.: Stereo matching with nonlinear diffusion. Int. J. Computer Vision 28, 155–174 (1998)CrossRefGoogle Scholar
  14. 14.
    Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Computer Vision 47, 7–42 (2002)MATHCrossRefGoogle Scholar
  15. 15.
    Scharstein, D., Szeliski, R.: High-accuracy stereo depth maps using structured light. In: Proc. CVPR, pp. 195–202 (2003)Google Scholar
  16. 16.
    Szeliski, R.: Prediction error as a quality metric for motion and stereo. In: Proc. ICCV, pp. 781–788 (1999)Google Scholar
  17. 17.
    Wedel, A., Brox, T., Vaudrey, T., Rabe, C., Franke, U., Cremers, D.: Stereoscopic scene flow computation for 3D motion understanding. Int. J. Computer Vision 95, 29–51 (2011)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ralf Haeusler
    • 1
  • Reinhard Klette
    • 1
  1. 1.Department of Computer ScienceThe University of AucklandAucklandNew Zealand

Personalised recommendations