Deterministic Random Oracles

  • Margus Niitsoo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7496)

Abstract

The Random Oracle model popularized by Bellare and Rogaway in 1993 has proven to be hugely successful, allowing cryptographers to give security proofs for very efficient and practical schemes. In this paper, we discuss the possibility of using an incompressible but fixed, ”algorithmically random” oracle instead of the standard random oracle and show that this approach allows for rather similar results to be proven but in a completely different way. We also show that anything provably secure in the standard random oracle model is also secure with respect to any algorithmically random oracle and then discuss the implications.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bennett, C.H., Gill, J.: Relative to a random oracle A, P A! = NP A! = co − NP A with probability 1. SIAM J. Comput. 10(1), 96–113 (1981)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: ACM Conference on Computer and Communications Security, pp. 62–73 (1993)Google Scholar
  3. 3.
    Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited. J. ACM 51(4), 557–594 (2004)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Nielsen, J.B.: Separating Random Oracle Proofs from Complexity Theoretic Proofs: The Non-committing Encryption Case. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 111–126. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Buldas, A., Laur, S., Niitsoo, M.: Oracle Separation in the Non-uniform Model. In: Pieprzyk, J., Zhang, F. (eds.) ProvSec 2009. LNCS, vol. 5848, pp. 230–244. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Beth, T., Dai, Z.-D.: On the Complexity of Pseudo-random Sequences - or: If You Can Describe a Sequence It Can’t Be Random. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 533–543. Springer, Heidelberg (1990)Google Scholar
  7. 7.
    Lutz, J.H.: Almost everywhere high nonuniform complexity. In: Structure in Complexity Theory, pp. 37–53 (1989)Google Scholar
  8. 8.
    Kautz, S.M., Miltersen, P.B.: Relative to a random oracle, NP is not small. Journal of Computer and System Sciences 53(2), 235–250 (1996)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Reingold, O., Trevisan, L., Vadhan, S.: Notions of Reducibility between Cryptographic Primitives. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 1–20. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Kolmogorov, A.N.: Three approaches to the quantitative definition of ’information’. Problems of Information Transmission 1, 1–7 (1965)Google Scholar
  11. 11.
    Chaitin, G.J.: On the length of programs for computing finite binary sequences. Journal of the ACM 13(4), 547–569 (1966)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Solomonoff, R.J.: A formal theory of inductive inference. Information and Control 7(2,3), 1–22, 224–254 (1964)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Levin, L.A.: Laws of information conservation (nongrowth) and aspects of the foundation of probability theory. Probl. Peredachi Inf. 10(3), 30–35 (1974)MATHGoogle Scholar
  14. 14.
    Chaitin, G.J.: A theory of program size formally identical to information theory. Journal of the ACM 22(3), 329–340 (1975)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Claude, C.: Information and Randomness: An Algorithmic Perspective. Springer-Verlag New York, Inc. (1994)Google Scholar
  16. 16.
    Martin-Löf, P.: The definition of random sequences. Information and Control 9(6), 602–619 (1966)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Solovay, R.M.: A version of omega for which ZFC can not predict a single bit. Technical report, CDMTCS (1999)Google Scholar
  18. 18.
    Impagliazzo, R.: Very strong one-way functions and pseudo-random generators exist relative to a random oracle (1996) (manuscript)Google Scholar
  19. 19.
    Gennaro, R., Trevisan, L.: Lower bounds on the efficiency of generic cryptographic constructions. Electronic Colloquium on Computational Complexity (ECCC) 7(22) (2000)Google Scholar
  20. 20.
    Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way permutations. In: Proceedings of 21st Annual ACM Symposium on the Theory of Computing, pp. 44–61 (1989)Google Scholar
  21. 21.
    Simon, D.R.: Findings Collisions on a One-Way Street: Can Secure Hash Functions Be Based on General Assumptions? In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 334–345. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  22. 22.
    Unruh, D.: Random Oracles and Auxiliary Input. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 205–223. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Margus Niitsoo
    • 1
  1. 1.University of TartuTartuEstonia

Personalised recommendations