Biological Brain and Binary Code: Quality of Coding for Face Recognition

  • João da Silva Gomes
  • Roman Borisyuk
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7552)


A computational model for face feature extraction and recognition capable of achieving a high degree of invariance to illumination and pose is presented. Similar to the complex V1 cells, the model uses a sparse binary code to represent an edge orientation. The binary code represents the face features for recognition. This paper investigates the geometrical structure of the linear space of face representation vectors. For this study the Yale Face Database B is used. It is shown that the biologically inspired procedure provides the face representation of a good quality: vectors representing the faces of the same person under different poses and illumination conditions are grouped together in the vector space. This code enables a very high recognition rate for both the illumination invariance and pose invariance settings.


Face Recognition Face Detection HMAX V1 Features Complex Cells Simple Cells 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bruce, C., Desimone, R., Gross, C.G.: Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. Journal of Neurophysiology 46(2), 369–384 (1981), Google Scholar
  2. 2.
    Carlson, E.T., Rasquinha, R.J., Zhang, K., Connor, C.E.: A sparse object coding scheme in area v4. Current Biology 21(4), 288–293 (2011), CrossRefGoogle Scholar
  3. 3.
    Georghiades, A., Belhumeur, P., Kriegman, D.: From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Pattern Anal. Mach. Intelligence 23(6), 643–660 (2001)CrossRefGoogle Scholar
  4. 4.
    Gross, C.G., Miranda, R.C.E., Bender, D.B.: Visual properties of neurons in inferotemporal cortex of the Macaque. J. Neurophysiol. 35(1), 96–111 (1972)Google Scholar
  5. 5.
    Hubel, D.H., Wiesel, T.N.: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. 160, 106–154 (1962)Google Scholar
  6. 6.
    Jaiswal, A., Agrawal, R.K., Kumar, N.: Performance evaluation of linear subspace methods for face recognition under illumination variation. In: Proceedings of The Fourth International C* Conference on Computer Science and Software Engineering, C3S2E 2011, pp. 103–110. ACM, New York (2011), Google Scholar
  7. 7.
    Jones, J.P., Palmer, L.A.: An evaluation of the two-dimensional gabor filter model of simple receptive fields in cat striate cortex. Journal of Neurophysiology 58, 1233–1258 (1987)Google Scholar
  8. 8.
    Masquelier, T., Thorpe, S.J.: Unsupervised learning of visual features through spike timing dependent plasticity. PLoS Comput. Biol. 3(2), e31 (2007),
  9. 9.
    Vu, N.-S., Caplier, A.: Biologically Inspired Processing for Lighting Robust Face Recognition. State of the art in Biometrics (July 2011),
  10. 10.
    Perrett, D.I., Rolls, E.T., Caan, W.: Visual neurones responsive to faces in the monkey temporal cortex. Exp. Brain Res. 47(3), 329–342 (1982)CrossRefGoogle Scholar
  11. 11.
    Riesenhuber, M., Poggio, T., Studies, E.: Hierarchical models of object recognition in cortex (1999)Google Scholar
  12. 12.
    Sinha, P., Poggio, T.: Role of learning in three-dimensional form perception. Nature 384(6608), 460–463 (1996), CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • João da Silva Gomes
    • 1
  • Roman Borisyuk
    • 1
  1. 1.School of Computing and MathematicsUniversity of PlymouthPlymouthUnited Kingdom

Personalised recommendations