PINGO: Peer Instruction for Very Large Groups

  • Wolfgang Reinhardt
  • Michael Sievers
  • Johannes Magenheim
  • Dennis Kundisch
  • Philipp Herrmann
  • Marc Beutner
  • Andrea Zoyke
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7563)


In this research, we introduce a new web-based solution that enables the transfer of the widely established Peer Instruction method to lectures with far more than 100 participants. The proposed solution avoids several existing flaws that hinder the widespread adoption of PI in lectures with larger groups. We test our new solution in a series of lectures with more than 500 participants and evaluate our prototype using the technology acceptance model. The evaluation results as well as qualitative feedback of course participants indicate that our new solution is a useful artifact to transfer the PI method to large groups.


peer instruction classroom response systems student activation interaction mobile learning open teaching concepts cloud computing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chase, J.D., Okie, E.G.: Combining cooperative learning and peer instruction in introductory computer science. SIGCSE Bulletin 32(1), 372–376 (2000)CrossRefGoogle Scholar
  2. 2.
    Cortright, R.N., Collins, H.L., DiCarlo, S.E.: Peer instruction enhanced meaningful learning: ability to solve novel problems. Advances in Physiology Education 29, 107–111 (2005)CrossRefGoogle Scholar
  3. 3.
    Crouch, C.H.: Peer instruction: An interactive approach for large classes. Optics & Photonics News 9(9), 37–41 (1998)CrossRefGoogle Scholar
  4. 4.
    Crouch, C.H., Mazur, E.: Peer instruction: Ten years of experience and results. American Journal of Physics 69, 970–977 (2001)CrossRefGoogle Scholar
  5. 5.
    Davis, F.D., Bagozzi, R.P., Warshaw, P.R.: User acceptance of computer technology: A comparison of two theoretical models. Management Science 35(8), 982–1003 (1989)CrossRefGoogle Scholar
  6. 6.
    Fagen, A.P., Crouch, C.H., Mazur, E.: Peer instruction: Results from a range of classrooms. Physics Teacher, 206–209 (2002)Google Scholar
  7. 7.
    Fels, G.: Die Publikumsfrage in der Chemievorlesung. Chemkon 16, 197–201 (2009)CrossRefGoogle Scholar
  8. 8.
    Giuliodori, M.J., Lujan, H.L., DiCarlo, S.E.: Peer instruction enhanced student performance on qualitative problemsolving questions. Advances in Physiology Education 30, 168–173 (2006)CrossRefGoogle Scholar
  9. 9.
    Kay, R.H., LeSage, A.: Examining the benefits and challenges of using audience response systems: A review of the literature. Computers & Education 53(3), 819–827 (2009)CrossRefGoogle Scholar
  10. 10.
    Kay, R.H., LeSage, A.: A strategic assessment of audience response systems used in higher education. Australasian Journal of Educational Technology 25(2), 235–249 (2009)Google Scholar
  11. 11.
    Koufaris, M.: Applying the technology acceptance model and flow theory to online consumer behavior. Information Systems Research 13(2), 205–223 (2002)CrossRefGoogle Scholar
  12. 12.
    Lantz, M.E.: The use of ’clickers’ in the classroom: Teaching innovation or merely an amusing novelty? Computers in Human Behavior 26(4), 556–561 (2010)CrossRefGoogle Scholar
  13. 13.
    MacArthur, J.R., Jones, L.L.: A review of literature reports of clickers applicable to college chemistry classrooms. Chemistry Education Research and Practice 9(3), 187–195 (2008)CrossRefGoogle Scholar
  14. 14.
    Mazur, E.: Peer Instruction: A User’s Manual. Prentice Hall (1997)Google Scholar
  15. 15.
    Moss, K., Crowley, M.: Effective learning in science: The use of personal response systems with a wide range of audiences. Computers & Education 56(1), 36–43 (2011)CrossRefGoogle Scholar
  16. 16.
    Pilzer, S.: Peer instruction in physics and mathematics. Primus 11(2), 185–192 (2001)CrossRefGoogle Scholar
  17. 17.
    Smith, M.K., Wood, W.B., Adams, W.K., Wieman, C., Knight, J.K., Guild, N., Su, T.T.: Why peer discussion improves student performance on inclass concept questions. Science 323, 122–124 (2009)CrossRefGoogle Scholar
  18. 18.
    Szajna, B.: Empirical evaluation of the revised technology acceptance model. Management Science 42(1), 85–92 (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Wolfgang Reinhardt
    • 1
  • Michael Sievers
    • 1
  • Johannes Magenheim
    • 1
  • Dennis Kundisch
    • 2
  • Philipp Herrmann
    • 2
  • Marc Beutner
    • 3
  • Andrea Zoyke
    • 4
  1. 1.Department of Computer Science Computer Science Education GroupUniversity of PaderbornPaderbornGermany
  2. 2.Faculty of Business Administration and Economics, Information Management & E-FinanceUniversity of PaderbornPaderbornGermany
  3. 3.Faculty of Business Administration and Economics, Business and Human Resource Education IIUniversity of PaderbornPaderbornGermany
  4. 4.Faculty of Business Administration and Economics, Business and Human Resource EducationUniversity of PaderbornPaderbornGermany

Personalised recommendations