Left-Right Oscillate Algorithm for Community Detection Used in E-Learning System

  • Jan Martinovič
  • Pavla Dráždilová
  • Kateřina Slaninová
  • Tomáš Kocyan
  • Václav Snášel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7564)


Learning management systems are widely used as a support of distance learning. Recently, these systems successfully help in present education as well. Learning management systems store large amount of data based on the history of users’ interactions with the system. Obtained information is commonly used for further course optimization, finding e-tutors in collaboration learning, analysis of students’ behavior, or for other purposes. The partial goal of the paper is an analysis of students’ behavior in a learning management system. Students’ behavior is defined using selected methods from sequential and process mining with the focus to the reduction of large amount of extracted sequences. The main goal of the paper is description of our Left-Right Oscillate algorithm for community detection. The usage of this algorithm is presented on the extracted sequences from the learning management system. The core of this work is based on spectral ordering. Spectral ordering is the first part of an algorithm used to seek out communities within selected, evaluated networks. More precise designations for communities are then monitored using modularity.


  1. 1.
    Castro, F., Vellido, A., Nebot, A., Mugica, F.: Applying Data Mining Techniques to e-Learning Problems. In: Jain, L., Tedman, R., Tedman, D. (eds.) Evolution of Teaching and Learning Paradigms in Intelligent Environment. SCI, vol. 62, pp. 183–221. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Chen, B., Shen, C., Ma, G., Zhang, Y., Zhou, Y.: The evaluation and analysis of student e-learning behaviour. In: IEEE/ACIS 10th International Conference on Computer and Information Science (ICIS), pp. 244–248 (2011)Google Scholar
  3. 3.
    Chen, J., Huang, K., Wang, F., Wang, H.: E-learning behavior analysis based on fuzzy clustering. In: Proceedings of International Conference on Genetic and Evolutionary Computing (2009)Google Scholar
  4. 4.
    Cheng, D., Kannan, R., Vempala, S., Wang, G.: On a recursive spectral algorithm for clustering from pairwise similarities. Technical report, MIT (2003)Google Scholar
  5. 5.
    Chung, F.R.K.: Spectral Graph Theory, vol. 92. American Mathematical Society (1997)Google Scholar
  6. 6.
    Dasgupta, A., Hopcroft, J., Kannan, R., Mitra, P.: Spectral Clustering by Recursive Partitioning. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 256–267. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Ding, C., He, X.: Linearized cluster assignment via spectral ordering. In: Twentyfirst International Conference on Machine Learning, ICML 2004, vol. 21, p. 30 (2004)Google Scholar
  8. 8.
    Dorogovtsev, S.N., Mendes, J.F.F.: Evolution of Networks: From Biological Nets to the Internet and WWW, vol. 57. Oxford University Press (2003)Google Scholar
  9. 9.
    Dráždilová, P., Obadi, G., Slaninová, K., Al-Dubaee, S., Martinovič, J., Snášel, V.: Computational Intelligence Methods for Data Analysis and Mining of eLearning Activities. In: Xhafa, F., Caballé, S., Abraham, A., Daradoumis, T., Juan Perez, A.A. (eds.) Computational Intelligence for Tech. Enhanced Learning. SCI, vol. 273, pp. 195–224. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Dráždilová, P., Slaninová, K., Martinovič, J., Obadi, G., Snášel, V.: Creation of students’ activities from learning management system and their analysis. In: Abraham, A., Snášel, V., Wegrzyn-Wolska, K. (eds.) IEEE Proceedings of International Conference on Computational Aspects of Social Networks, CASON 2009, pp. 155–160 (2009)Google Scholar
  11. 11.
    El-halees, A.: Mining students data to analyze learning behavior: a case study (2008)Google Scholar
  12. 12.
    Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proceedings of the National Academy of Sciences of the United States of America 99(12), 7821–7826 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Guo, A., Siegelmann, H.: Time-Warped Longest Common Subsequence Algorithm for Music Retrieval, pp. 258–261. Universitat Pompeu Fabra (2004)Google Scholar
  14. 14.
    Hershkovitz, A., Nachmias, R.: Learning about online learning processes and students’ motivation through web usage mining. Interdisciplinary Journal of E-Learning and Learning Objects 5, 197–214 (2009)Google Scholar
  15. 15.
    Hirschberg, D.S.: Algorithms for the longest common subsequence problem. J. ACM 24, 664–675 (1977)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Müller, M.: Information Retrieval for Music and Motion. Springer (2007)Google Scholar
  17. 17.
    Newman, M.E.J., Barabási, A.-L., Watts, D.J.: The structure and dynamics of networks, vol. 107. Princeton University Press (2006)Google Scholar
  18. 18.
    Newman, M.E.J.: Detecting community structure in networks. The European Physical Journal B Condensed Matter 38(2), 321–330 (2004)CrossRefGoogle Scholar
  19. 19.
    Newman, M.E.J.: Modularity and community structure in networks. Proceedings of the National Academy of Sciences of the United States of America 103(23), 8577–8582 (2006)CrossRefGoogle Scholar
  20. 20.
    Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Physical Review E - Statistical, Nonlinear and Soft Matter Physics 69(2 Pt 2), 16 (2004)Google Scholar
  21. 21.
    Slaninová, K., Kocyan, T., Martinovič, J., Dráždilová, P., Snášel, V.: Dynamic time warping in analysis of student behavioral patterns. In: Proceedings of the Dateso 2012, Annual International Workshop on DAtabases, TExts, Specifications and Objects, pp. 49–59 (2012)Google Scholar
  22. 22.
    van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement of Business Processes, 1st edn. Springer, Heidelberg (2011)zbMATHGoogle Scholar
  23. 23.
    van der Aalst, W.M.P., Reijers, H.A., Song, M.: Discovering social networks from event logs. Comput. Supported Coop. Work 14(6), 549–593 (2005)CrossRefGoogle Scholar
  24. 24.
    White, S., Smyth, P.: A spectral clustering approach to finding communities in graphs. In: Proceedings of the Fifth SIAM International Conference on Data Mining, vol. 119, p. 274 (2005)Google Scholar
  25. 25.
    Yang, F., Shen, R., Han, P.: Construction and application of the learning behavior analysis center based on open e-learning platform (2002)Google Scholar
  26. 26.
    Zorrilla, M.E., Menasalvas, E., Marín, D., Mora, E., Segovia, J.: Web Usage Mining Project for Improving Web-Based Learning Sites. In: Moreno Díaz, R., Pichler, F., Quesada Arencibia, A. (eds.) EUROCAST 2005. LNCS, vol. 3643, pp. 205–210. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2012

Authors and Affiliations

  • Jan Martinovič
    • 2
  • Pavla Dráždilová
    • 1
  • Kateřina Slaninová
    • 1
  • Tomáš Kocyan
    • 2
  • Václav Snášel
    • 2
  1. 1.Faculty of Electrical Engineering and Computer ScienceVŠB - Technical University of OstravaOstravaCzech Republic
  2. 2.IT4InnovationsVŠB - Technical University of OstravaOstravaCzech Republic

Personalised recommendations