Advertisement

Online Communities Support Policy-Making: The Need for Data Analysis

  • Roman Klinger
  • Philipp Senger
  • Sumit Madan
  • Michal Jacovi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7444)

Abstract

Policy decisions in governmental models are often based on their perception and acceptance in the general public. Traditional methods for harvesting opinions like telephone or street surveys are time intensive and costly and direct interaction between a governmental member and the population is limited. Social media harbor the chance to easily get a high number of opinions and proposals in form of poll participation or interactive debate contributions.

Especially debates about political topics can generate data which are hard to interpret because of its length and complexity. We propose a collection of methods to support a decision maker in gaining an overview over textual debates coming from several social media to save time and effort in manual analysis. Our approach enables an efficient decision making process by a combination of automatic topic clustering, sentiment analysis, filtering, and search functionalities aggregated in a graphical user interface. We present an implementation and a use case proving the usefulness of the proposed methodologies.

Keywords

Opinion Mining Latent Dirichlet Allocation Sentiment Analysis Virtual Space Sentiment Score 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Baeza-Yates, R.A., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-Wesley Longman Publishing Co., Inc., Boston (1999)Google Scholar
  2. 2.
    Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. Journal of Machine Learning Research 3, 993–1022 (2003)zbMATHGoogle Scholar
  3. 3.
    Cohen, J.: Weighted kappa: Nominal scale agreement provision for scaled disagreement or partial credit. Psychological Bulletin 70(4), 213–220 (1968)CrossRefGoogle Scholar
  4. 4.
    Effing, R., van Hillegersberg, J., Huibers, T.: Social Media and Political Participation: Are Facebook, Twitter and YouTube Democratizing Our Political Systems? In: Tambouris, E., Macintosh, A., de Bruijn, H. (eds.) ePart 2011. LNCS, vol. 6847, pp. 25–35. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Esuli, A., Sebastiani, F.: Determining term subjectivity and term orientation for opinion mining. In: Proceedings of the Conference of the European Chapter of the Association for Computational Linguistics, EACL (2006)Google Scholar
  6. 6.
    Glance, N.S., Hurst, M., Tomokiyo, T.: Blogpulse: Automated trend discovery for weblogs. In: WWW 2004 Workshop on the webblogging ecosystem: Aggregation, Analysis, and Dynamics. ACM (2004)Google Scholar
  7. 7.
    Hu, M., Liu, B.: Mining and summarizing customer reviews. In: Proceedings of Knowledge Discovery in Databases Conference. ACM, Seattle (2004)Google Scholar
  8. 8.
    Kim, S.-M., Hovy, E.: Determining the sentiment of opinions. In: Proceedings of the COLING conference, Geneva, Switzerland (2004)Google Scholar
  9. 9.
    MacKay, D.: Information Theory, Inference and Learning Algorithms. In: An Example Inference Task: Clustering, ch. 20, pp. 284–292. Cambridge University Press (2003)Google Scholar
  10. 10.
    Maragoudakis, M., Loukis, E., Charalabidis, Y.: A Review of Opinion Mining Methods for Analyzing Citizens’ Contributions in Public Policy Debate. In: Tambouris, E., Macintosh, A., de Bruijn, H. (eds.) ePart 2011. LNCS, vol. 6847, pp. 298–313. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    McCallum, A.: Information extraction: Distilling structured data from unstructured text. Queue 3, 48–57 (2005)CrossRefGoogle Scholar
  12. 12.
    McCallum, A.K.: MALLET: A Machine Learning for Language Toolkit (2002), http://mallet.cs.umass.edu
  13. 13.
    Mei, Q., Liu, C., Su, H., Zhai, C.: A probabilistic approach to spatiotemporal theme pattern mining on weblogs. In: Proceedings of the 15th International Conference on World Wide Web, WWW 2006, pp. 533–542. ACM, New York (2006)CrossRefGoogle Scholar
  14. 14.
    Nanno, T., Fujiki, T., Suzuki, Y., Okumura, M.: Automatically collecting, monitoring, and mining japanese weblogs. In: Proceedings of the 13th International World Wide Web Conference on Alternate Track Papers & Posters, WWW Alt. 2004, pp. 320–321. ACM, New York (2004)CrossRefGoogle Scholar
  15. 15.
    Pang, B., Lee, L.: Opinion mining and sentiment analysis. Found. Trends Inf. Retr. 2, 1–135 (2008)CrossRefGoogle Scholar
  16. 16.
    Somasundaran, S., Wiebe, J.: Recognizing stances in ideological on-line debates. In: Proceedings of the NAACL HLT 2010 Workshop on Computational Approaches to Analysis and Generation of Emotion in Text, Los Angeles, California, USA (June 2010)Google Scholar
  17. 17.
    Steyvers, M., Griffiths, T.: Probabilistic topic models. In: Latent Semantic Analysis: A Road to Meaning. Lawrence Erlbaum (2007)Google Scholar
  18. 18.
    sync3: Eu project sync3 (2011), http://www.sync3.eu/
  19. 19.
    Sæbø, Ø.: Understanding TwitterTM Use among Parliament Representatives: A Genre Analysis. In: Tambouris, E., Macintosh, A., de Bruijn, H. (eds.) ePart 2011. LNCS, vol. 6847, pp. 1–12. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  20. 20.
    Teufl, P., Payer, U., Parycek, P.: Automated Analysis of e-Participation Data by Utilizing Associative Networks, Spreading Activation and Unsupervised Learning. In: Macintosh, A., Tambouris, E. (eds.) ePart 2009. LNCS, vol. 5694, pp. 139–150. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  21. 21.
  22. 22.
    Tserpes, K., Jacovi, M., Gardner, M., Triantafillou, A., Cohen, B.: +spaces: Intelligent virtual spaces for egovernment. In: Proceedings of International Conference on Intelligent Environments (IE 2010), Guanajuato, Mexico (June 2010)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2012

Authors and Affiliations

  • Roman Klinger
    • 1
  • Philipp Senger
    • 1
  • Sumit Madan
    • 1
  • Michal Jacovi
    • 2
  1. 1.Fraunhofer Institute for Algorithms and Scientific Computing (SCAI)Schloss BirlinghovenSankt AugustinGermany
  2. 2.Social Technologies Group, Information & Social Analytics Dept.IBM Haifa Research LabHaifaIsrael

Personalised recommendations